...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites
【24h】

Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites

机译:单向纤维增强复合材料动态断裂的周动力模型

获取原文
获取原文并翻译 | 示例

摘要

We propose a computational method for a homogenized peridynamics description of fiber-reinforced composites and we use it to simulate dynamic brittle fracture and damage in these materials. With this model we analyze the dynamic effects induced by different types of dynamic loading on the fracture and damage behavior of unidirectional fiber-reinforced composites. In contrast to the results expected from quasi-static loading, the simulations show that dynamic conditions can lead to co-existence of and transitions between fracture modes; matrix shattering can happen before a splitting crack propagates. We observe matrix-fiber splitting fracture, matrix cracking, and crack migration in the matrix, including crack branching in the matrix similar to what is observed in recent dynamic experiments. The new model works for arbitrary fiber orientation relative to a uniform discretization grid and also works with random discretizations. The peridynamic composite model captures significant differences in the crack propagation behavior when dynamic loadings of different intensities are applied. An interesting result is branching of a splitting crack into two matrix cracks in transversely loaded samples. These cracks branch as in an isotropic material but here they migrate over the "fiber bonds", without breaking them. This behavior has been observed in recent experiments. The strong influence that elastic waves have on the matrix damage and crack propagation paths is discussed. No special criteria for splitting mode fracture (Mode II), crack curving, or crack arrest are needed, and yet we obtain all these modes of material failure as a direct result of the peridynamic simulations.
机译:我们提出了一种用于纤维增强复合材料的均质周边动力学描述的计算方法,并用它来模拟这些材料中的动态脆性断裂和损伤。使用该模型,我们分析了不同类型的动态载荷引起的动态影响,该动态载荷对单向纤维增强复合材料的断裂和损伤行为。与准静态载荷预期的结果相反,模拟表明动态条件可导致断裂模式的共存和过渡。在裂隙扩展之前,可能发生基体破碎。我们观察到基体纤维分裂断裂,基体开裂和基体中的裂纹迁移,包括基体中的裂纹分支,这与最近的动态实验中观察到的相似。新模型适用于相对于均匀离散网格的任意纤维方向,也适用于随机离散。当施加不同强度的动态载荷时,围动态复合模型捕获了裂纹扩展行为的显着差异。一个有趣的结果是在横向加载的样本中将裂化裂纹分支为两个基质裂纹。这些裂缝像在各向同性材料中一样分支,但在这里它们在“纤维键”上迁移,而不会破坏它们。在最近的实验中已经观察到这种行为。讨论了弹性波对基体损伤和裂纹扩展路径的强烈影响。不需要特殊的分裂模式断裂(模式II),裂纹弯曲或裂纹止裂的标准,但是我们获得了所有这些材料破坏模式,这是周边动力学模拟的直接结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号