...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Multiscale modeling using goal-oriented adaptivity and numerical homogenization. Part I: Mathematical formulation and numerical results
【24h】

Multiscale modeling using goal-oriented adaptivity and numerical homogenization. Part I: Mathematical formulation and numerical results

机译:使用面向目标的适应性和数值均质化进行多尺度建模。第一部分:数学公式和数值结果

获取原文
获取原文并翻译 | 示例
           

摘要

This paper is the first in this series to develop a numerical homogenization method for heterogeneous media and integrate it with goal-oriented finite element mesh adaptivity. We describe the physical application, Step and Flash Imprint Lithography, in brief and present the mathematical ideas and numerical verification. The method requires the Moore-Penrose pseudoinverse of element stiffness matrices. Algorithms for efficiently computing the pseudoinverse of sparse matrices will be presented in the second paper. The purpose of numerical homogenization is to reduce the number of degrees of freedom, find locally optimal effective material properties, and perform goal-oriented mesh refinement. Traditionally, a finite element mesh is designed after obtaining material properties in different regions. The mesh has to resolve material discontinuities and rapid variations in the solution. In our approach, however, we generate a sequence of coarse meshes (possibly 1-irregular), and homogenize material properties on each coarse mesh element using a locally posed constrained convex quadratic optimization problem. This upscaling is done using the Moore-Penrose pseudoinverse of the linearized fine-scale element stiffness matrices, and a material-independent interpolation operator. Numerical verification is done using a two dimensional conductivity problem with known analytical limit. Finally, we present results for two and three dimensional geometries. The results show that this method uses orders of magnitude fewer degrees of freedom to give fast and approximate solutions of the original fine-scale problem.
机译:本文是该系列中第一篇针对异质介质开发数值均化方法并将其与面向目标的有限元网格自适应性集成的方法。我们简要介绍了物理应用,步进和闪光压印光刻技术,并介绍了数学思想和数值验证。该方法需要元素刚度矩阵的Moore-Penrose伪逆。第二篇论文将介绍有效计算稀疏矩阵的伪逆的算法。数值均匀化的目的是减少自由度的数量,找到局部最优的有效材料属性,并执行面向目标的网格细化。传统上,在获得不同区域的材料属性后才设计有限元网格。网格必须解决材料的不连续性和溶液中的快速变化。但是,在我们的方法中,我们生成了一系列粗网格(可能为1-不规则),并使用局部放置的约束凸二次优化问题对每个粗网格元素上的材料属性进行了均质化。使用线性化的小尺度元素刚度矩阵的Moore-Penrose伪逆和与材料无关的插值算子可以完成这种放大。使用具有已知分析极限的二维电导率问题进行数值验证。最后,我们介绍了二维和三维几何的结果。结果表明,该方法使用的自由度要小几个数量级,以给出原始精细规模问题的快速近似解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号