...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An efficient framework for optimization and parameter sensitivity analysis in arterial growth and remodeling computations
【24h】

An efficient framework for optimization and parameter sensitivity analysis in arterial growth and remodeling computations

机译:在动脉生长和重构计算中进行优化和参数敏感性分析的有效框架

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Computational models for vascular growth and remodeling (G&R) are used to predict the long-term response of vessels to changes in pressure, flow, and other mechanical loading conditions. Accurate predictions of these responses are essential for understanding numerous disease processes. Such models require reliable inputs of numerous parameters, including material properties and growth rates, which are often experimentally derived, and inherently uncertain. While earlier methods have used a brute force approach, systematic uncertainty quantification in G&R models promises to provide much better information. In this work, we introduce an efficient framework for uncertainty quantification and optimal parameter selection, and illustrate it via several examples. First, an adaptive sparse grid stochastic collocation scheme is implemented in an established G&R solver to quantify parameter sensitivities, and near-linear scaling with the number of parameters is demonstrated. This non-intrusive and parallelizable algorithm is compared with standard sampling algorithms such as Monte-Carlo. Second, we determine optimal arterial wall material properties by applying robust optimization. We couple the G&R simulator with an adaptive sparse grid collocation approach and a derivative-free optimization algorithm. We show that an artery can achieve optimal homeostatic conditions over a range of alterations in pressure and flow; robustness of the solution is enforced by including uncertainty in loading conditions in the objective function. We then show that homeostatic intramural and wall shear stress is maintained for a wide range of material properties, though the time it takes to achieve this state varies. We also show that the intramural stress is robust and lies within 5% of its mean value for realistic variability of the material parameters. We observe that prestretch of elastin and collagen are most critical to maintaining homeostasis, while values of the material properties are most critical in determining response time. Finally, we outline several challenges to the G&R community for future work. We suggest that these tools provide the first systematic and efficient framework to quantify uncertainties and optimally identify G&R model parameters.
机译:血管生长和重塑(G&R)的计算模型用于预测血管对压力,流量和其他机械负荷条件变化的长期响应。这些反应的准确预测对于理解众多疾病过程至关重要。这种模型需要可靠地输入许多参数,包括材料特性和增长率,这些参数通常是通过实验得出的,并且固有地不确定。尽管较早的方法使用了蛮力方法,但G&R模型中的系统不确定性量化有望提供更好的信息。在这项工作中,我们为不确定性量化和最佳参数选择引入了一个有效的框架,并通过几个示例进行了说明。首先,在已建立的G&R求解器中实现了一种自适应稀疏网格随机配置方案,以量化参数敏感度,并证明了随参数数量的近线性缩放。将该非侵入性和可并行化算法与标准采样算法(例如蒙特卡洛)进行了比较。其次,我们通过应用鲁棒性优化来确定最佳的动脉壁材料性能。我们将G&R模拟器与自适应稀疏网格配置方法和无导数优化算法结合在一起。我们表明,在一定的压力和流量变化范围内,动脉可以达到最佳的稳态条件。通过在目标函数中包括加载条件的不确定性,可以增强解决方案的鲁棒性。然后,我们表明,尽管达到该状态所需的时间有所不同,但稳态的壁内剪应力和壁剪应力可在多种材料特性中保持不变。我们还显示壁内应力是坚固的,并且在材料参数的实际可变性的平均值的5%范围内。我们观察到,弹性蛋白和胶原蛋白的预拉伸对于维持体内平衡最为关键,而材料特性的值对于确定响应时间最为关键。最后,我们概述了G&R社区未来工作的一些挑战。我们建议这些工具为量化不确定性和最佳识别G&R模型参数提供第一个系统有效的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号