首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Fifteen node tetrahedral elements for explicit methods in nonlinear solid dynamics
【24h】

Fifteen node tetrahedral elements for explicit methods in nonlinear solid dynamics

机译:非线性固体动力学中显式方法的十五个节点四面体单元

获取原文
获取原文并翻译 | 示例
       

摘要

Despite the ease in meshing and benefits for modeling flexure, curved shapes, etc., second-order tetrahedral elements are not contained in typical explicit solid dynamic programs. This is primarily due to the lack of both a satisfactory consistent nodal loading distribution and mass lumping technique. Row summation lumping, for instance, produces negative vertex node masses for the popular ten node "serendipity" tetrahedron, which also has zero vertex node loads resulting from a constant pressure on an element face. This has led to piecewise composites of four node tetrahedrons to represent a ten node one in explicit codes. In this paper, truly second-order fifteen node formulations for compressible and for nearly incompressible materials are presented and evaluated. In addition to producing all positive nodal loads from a uniform traction, row summation mass lumping for the fifteen node element is shown to produce all positive nodal masses. Performance is assessed in standard benchmark problems and practical applications using various elastic and elastic-plastic material models and involving very large strains/deformations, severe distortions, and contact-impact. Comparisons are also made with several first-order elements and second-order hexahedral formulations. The offered elements performed satisfactorily in all examples. As recently found for second-order hexahedral elements, it is shown that the inclusion of face and centroidal nodes is vital for robust performance with row summation lumping, and high-order quadrature rules are crucial with explicit methods. These second-order elements are shown to be viable for practical applications, especially using today's parallel computers. Whereas the reliable performance is generally attained at significant computational expense compared with first-order and brick types, these elements can be more computationally competitive in flexure and have the desirable trait that they are amenable to automatic tetrahedral meshing software.
机译:尽管网格划分容易,并且对弯曲,弯曲形状等进行建模有很多好处,但是典型的显式实体动力学程序中并不包含二阶四面体元素。这主要是由于缺乏令人满意的一致的节点载荷分布和质量集总技术。例如,行求和集总会为流行的十个节点“偶然性”四面体产生负的顶点节点质量,该四面体也具有零顶点节点载荷,这是由元素面上的恒定压力导致的。这导致了四个节点四面体的分段合成,以显式代码表示一个十节点四面体。在本文中,提出并评估了可压缩和几乎不可压缩材料的真正二阶十五节点公式。除了通过均匀的牵引力产生所有正节点载荷外,还显示了十五个节点元素的行总和质量集总会产生所有正节点质量。使用各种弹性和弹塑性材料模型,在标准基准问题和实际应用中对性能进行评估,其中涉及非常大的应变/变形,严重变形和接触冲击。还对几种一阶元素和二阶六面体公式进行了比较。所提供的元素在所有示例中均令人满意。正如最近发现的用于二阶六面体元素的结果所示,包含面和质心节点对于行求和集总的鲁棒性能至关重要,而高阶正交规则对于显式方法至关重要。这些二阶元素显示出对于实际应用是可行的,尤其是在使用当今的并行计算机时。尽管与一阶和砖形类型相比,通常以显着的计算开销获得可靠的性能,但是这些元素在挠曲方面可能更具计算竞争力,并且具有它们适合自动四面体网格划分软件的理想特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号