...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Phase-field study of electrochemical reactions at exterior and interior interfaces in Li-ion battery electrode particles
【24h】

Phase-field study of electrochemical reactions at exterior and interior interfaces in Li-ion battery electrode particles

机译:锂离子电池电极颗粒内外界面电化学反应的相场研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To study the electrochemical reaction on surfaces, phase interfaces, and crack surfaces in lithium ion battery electrode particles, a phase-field model is developed which describes fracture in large strains and anisotropic Cahn-Hilliard-Reaction. Thereby the concentration-dependency of the elastic properties and the anisotropy of diffusivity are also considered. The implementation in 3D is carried out by the isogeometric finite element method in order to treat the higher order terms in a straightforward manner. The electrochemical reaction is modeled through a modified Butler-Volmer equation to account for the influence of the phase change on the reaction on exterior surfaces. The reaction on the crack surfaces is considered through a volume source term weighted by a term related to the fracture order parameter. Based on the model, three characteristic examples are considered to reveal the electrochemical reactions on particle surfaces, phase interfaces, and crack surfaces, as well as their influence on the particle material behavior. The results show that both the anisotropy and the ratio between the timescales of reaction and diffusion can have a significant influence on the phase segregation behavior. In turn, the distribution of the lithium concentration strongly influences the reaction on the surface, especially when the phase interfaces appear on exterior surfaces or crack surfaces. The reaction rate increases considerably at phase interfaces due to the large lithium concentration gradient. Moreover, the simulations demonstrate that the segregation of a Li-rich and a Li-poor phase during delithiation can drive the cracks to propagate. The results indicate that the model can capture the electrochemical reaction on the freshly cracked surfaces. (C) 2016 Elsevier B.V. All rights reserved.
机译:为了研究锂离子电池电极颗粒表面,相界面和裂纹表面上的电化学反应,建立了一个相场模型,该模型描述了大应变下的断裂和各向异性的Cahn-Hilliard反应。因此,还考虑了弹性性质的浓度依赖性和扩散性的各向异性。 3D中的实现是通过等几何有限元方法执行的,以便以直接的方式处理高阶项。通过修正的Butler-Volmer方程对电化学反应进行建模,以说明相变对外表面反应的影响。通过体积源项来考虑裂纹表面上的反应,该体积源项由与断裂顺序参数相关的项加权。基于该模型,考虑了三个特征示例,以揭示颗粒表面,相界面和裂纹表面上的电化学反应,以及它们对颗粒材料行为的影响。结果表明,各向异性以及反应和扩散时间尺度之间的比率均可对相偏析行为产生重大影响。进而,锂浓度的分布强烈影响表面上的反应,尤其是当相界面出现在外表面或裂纹表面上时。由于锂浓度梯度大,反应速率在相界面处显着提高。此外,模拟表明,在脱锂过程中富锂相和贫锂相的偏析会驱动裂纹扩展。结果表明,该模型可以捕获新裂纹表面的电化学反应。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号