首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A random matrix approach for quantifying model-form uncertainties in turbulence modeling
【24h】

A random matrix approach for quantifying model-form uncertainties in turbulence modeling

机译:湍流建模中量化模型形式不确定性的随机矩阵方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

With the ever-increasing use of Reynolds-Averaged Navier Stokes (RANS) simulations in mission-critical applications, the quantification of model-form uncertainty in RANS models has attracted attention in the turbulence modeling community. Recently, a physics-based nonparametric approach for quantifying model-form uncertainty in RANS simulations has been proposed, where Reynolds stresses are projected to physically meaningful dimensions and perturbations are introduced only in the physically realizable limits (Xiao et al., 2016). However, a challenge associated with this approach is to assess the amount of information introduced in the prior distribution and to avoid imposing unwarranted constraints. In this work we propose a random matrix approach for quantifying model-form uncertainties in RANS simulations with the realizability of the Reynolds stress guaranteed, which is achieved by construction from the Cholesky factorization of the normalized Reynolds stress tensor. Furthermore, the maximum entropy principle is used to identify the probability distribution that satisfies the constraints from available information but without introducing artificial constraints. We demonstrate that the proposed approach is able to ensure the realizability of the Reynolds stress, albeit in a different manner from the physics-based approach. Monte Carlo sampling of the obtained probability distribution is achieved by using polynomial chaos expansion to map independent Gaussian random fields to the Reynolds stress random field with the marginal distributions and correlation structures as specified. Numerical simulations on a typical flow with separation have shown physically reasonable results, which verify the proposed approach. Therefore, the proposed method is a promising alternative to the physics-based approach for model-form uncertainty quantification of RANS simulations. The method explored in this work is general and can be extended to other complex physical systems in applied mechanics and engineering. (C) 2016 Elsevier B.V. All rights reserved.
机译:随着在关键任务应用中越来越多地使用雷诺平均Navier Stokes(RANS)模拟,RANS模型中模型形式不确定性的量化引起了湍流建模界的关注。最近,有人提出了一种基于物理的非参数方法来量化RANS模拟中的模型形式不确定性,其中雷诺应力被投影到物理上有意义的尺寸,而扰动仅在物理上可实现的极限内引入(Xiao等人,2016)。但是,与这种方法相关的挑战是评估先前分发中引入的信息量,并避免施加不必要的约束。在这项工作中,我们提出了一种随机矩阵方法,用于量化RANS仿真中模型形式的不确定性,并保证了雷诺应力的可实现性,这是通过从标准化雷诺应力张量的Cholesky分解构造而实现的。此外,最大熵原理用于从可用信息中识别满足约束但未引入人为约束的概率分布。我们证明了所提出的方法能够确保雷诺应力的可实现性,尽管其方法与基于物理的方法不同。通过使用多项式混沌扩展将独立的高斯随机场映射到具有指定的边际分布和相关结构的雷诺应力随机场,可以对获得的概率分布进行蒙特卡洛采样。对典型的分离流动的数值模拟显示了物理上合理的结果,这些结果验证了所提出的方法。因此,所提出的方法是对基于物理的方法进行RANS仿真模型形式不确定性量化的有前途的替代方法。在这项工作中探索的方法是通用的,并且可以扩展到应用力学和工程学中的其他复杂物理系统。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号