...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Buckling strength topology optimization of 2D periodic materials based on linearized bifurcation analysis
【24h】

Buckling strength topology optimization of 2D periodic materials based on linearized bifurcation analysis

机译:基于线性化分叉分析的二维周期材料屈曲强度拓扑优化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Low density cellular materials may offer excellent mechanical properties and find wide applicability in lightweight design and infill structures for additive manufacturing, yet currently existing material structures are still far away from their theoretical limit in terms of compressive strength. To explore the existing potential, this paper presents a topology optimization framework for designing periodic cellular materials with maximized strength under compressive loading. Under this condition, the limiting factor of strength is the failure mechanism of buckling instability in the microstructure. In order to predict microstructural buckling, a simplified model based on homogenization theory, a linearized stability criterion and Floquet-Bloch theory is employed. Subsequently, a gradient-based topology optimization problem is formulated to maximize the buckling strength of the most critical failure mode. The framework is utilized to optimize square, triangular and hexagonal microstructures for three different macroscopic load conditions including biaxial, uniaxial and shear loading, and performance assessments are conducted by computation of associated failure surfaces in macroscopic stress space. In all cases, the optimized designs turn out to be first-order hierarchical type microstructures which offer major improvements of strength compared to the initial zero-order designs, however, the gains come at the cost of reductions in stiffness. Furthermore, it is illustrated how imposing geometric symmetry constraints can be exploited to control the shape of the failure surfaces. (C) 2018 Elsevier B.V. All rights reserved.
机译:低密度多孔材料可提供出色的机械性能,并在轻量化设计和填充结构用于增材制造方面具有广泛的适用性,但是目前现有的材料结构在抗压强度方面仍远未达到其理论极限。为了探索现有的潜力,本文提出了一种拓扑优化框架,用于设计在压缩载荷下具有最大强度的周期性多孔材料。在这种条件下,强度的限制因素是微结构屈曲不稳定性的破坏机理。为了预测微结构屈曲,采用了基于均质化理论,线性稳定性准则和Floquet-Bloch理论的简化模型。随后,提出了基于梯度的拓扑优化问题,以使最关键的失效模式的屈曲强度最大化。该框架用于优化三种不同宏观载荷条件(包括双轴,单轴和剪切载荷)的正方形,三角形和六边形微观结构,并通过计算宏观应力空间中相关的破坏面进行性能评估。在所有情况下,经过优化的设计都是一阶的分层型微结构,与最初的零阶设计相比,强度得到了显着提高,但是,获得的好处是以降低刚度为代价的。此外,还说明了如何利用强加的几何对称约束来控制破坏面的形状。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号