首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
【24h】

On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks

机译:在傅立叶特征网络的特征向量偏见:从回归解决与物理信息的神经网络的多尺度PDE

获取原文
获取原文并翻译 | 示例
           

摘要

Physics-informed neural networks (PINNs) are demonstrating remarkable promise in integrating physical models with gappy and noisy observational data, but they still struggle in cases where the target functions to be approximated exhibit high-frequency or multi-scale features. In this work we investigate this limitation through the lens of Neural Tangent Kernel (NTK) theory and elucidate how PINNs are biased towards learning functions along the dominant eigen-directions of their limiting NTK. Using this observation, we construct novel architectures that employ spatio-temporal and multi-scale random Fourier features, and justify how such coordinate embedding layers can lead to robust and accurate PINN models. Numerical examples are presented for several challenging cases where conventional PINN models fail, including wave propagation and reaction-diffusion dynamics, illustrating how the proposed methods can be used to effectively tackle both forward and inverse problems involving partial differential equations with multi-scale behavior. All code an data accompanying this manuscript will be made publicly available at https://github.com/PredictiveIntelligenceLa/MultiscalePINNs. (C) 2021 Elsevier B.V. All rights reserved.
机译:物理知识的神经网络(PINNS)在将物理模型与Gappy和嘈杂的观测数据集成,但在目标函数近似呈现高频或多尺度特征的情况下,它们仍然努力。在这项工作中,我们通过神经切线内核(NTK)理论的镜头来调查这种限制,并阐明PINNS如何沿着其限制NTK的主要特征方向偏向学习功能。使用此观察,我们构建了新的架构,该架构采用了时空和多尺度随机傅里叶功能,并证明了这种坐标嵌入层如何导致强大,精确的Pinn模型。呈现数值示例,用于若干具有挑战性的情况,其中传统的PINN模型失败,包括波传播和反作用动态动态,示出了所提出的方法如何用于有效地解决涉及具有多尺度行为的部分微分方程的前向和逆问题。所有代码伴随此稿件的数据将在HTTPS://github.com/predictiveintelligencela/multiscalepinns上公开提供。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号