首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Identification of crystal plasticity model parameters by multi-objective optimization integrating microstructural evolution and mechanical data
【24h】

Identification of crystal plasticity model parameters by multi-objective optimization integrating microstructural evolution and mechanical data

机译:多目标优化集成微观结构演化与机械数据的晶体塑性模型参数识别

获取原文
获取原文并翻译 | 示例
           

摘要

Crystal plasticity models evolve a polycrystalline yield surface using meso-scale descriptions of deformation mechanisms. The activation of deformation mechanisms is governed by crystallography and a set of model parameters, which are typically calibrated through the fitting of mechanical data such as stress-strain curves and elastic lattice strains. Microstructural data such as phase fractions and texture evolution are used for verifying crystal plasticity parameters. In this work, we use a multi-objective genetic algorithm to identify hardening parameters from flow stress curves with an option to incorporate texture into the optimization approach. Robust, generalized objective functions are developed and used to identify sets of parameters pertaining to dislocation density-based hardening laws in visco-plastic and elasto-plastic self-consistent (VPSC and EPSC) homogenization models. First, the parameters are identified for pure Nb directly from texture using an objective function based on generalized spherical harmonics. Since texture evolution is driven by the relative contribution of active slip systems, the parameters governing the evolution of slip resistance ratios can be recovered from fitting discrete textures at a series of strains. Next, a comprehensive set of load reversal data for dual phase (DP) 780 steel is used to fit a hardening law and a back-stress law in EPSC. Finally, parameters pertaining to a complex hardening law for the evolution of slip and twinning in pure alpha-Ti are identified. Remarkably, using texture as an objective in combination with stress-strain objectives constrains the model of Ti to fully reproduce not only stress-strain and texture evolution but also hierarchical twinning measurements as a function of initial grain size and texture. Furthermore, given an appropriate model fit to representative experimental texture evolution, underlying twin volume fractions contributing to texture evolution can be predicted. (C) 2021 Elsevier B.V. All rights reserved.
机译:晶体塑性模型使用Meso-Scale的描述变形机制演变了多晶屈服表面。变形机制的激活由晶体学和一组模型参数控制,这通常通过诸如应力 - 应变曲线和弹性晶格菌株的机械数据的拟合校准。相位数和纹理演化的微观结构数据用于验证晶体塑性参数。在这项工作中,我们使用多目标遗传算法来从流量应力曲线识别硬化参数,并选择将纹理结合到优化方法中。开发了稳健的广义目标函数,并用于识别粘塑料和弹塑性自给自足(VPSC和EPSC)均质模型中基于位错密度的硬化定律的参数。首先,使用基于广义球形谐波的目标函数直接从纹理识别参数。由于纹理进化由主动滑动系统的相对贡献驱动,因此可以从一系列菌株的拟合离散纹理中回收控制滑动电阻比的演变的参数。接下来,用于双相(DP)780钢的全面负载反转数据用于适应EPSC中的硬化法和后应力法。最后,鉴定了与纯α-Ti中滑动和孪晶演化的复杂硬化法有关的参数。值得注意的是,使用纹理作为一个目标与应力 - 应变目标结合地限制了Ti的模型,不仅完全再现了应力 - 应变和纹理演化,而且还具有初始晶粒尺寸和纹理的函数的分层孪晶测量。此外,鉴于适合代表性实验纹理演化的适当模型,可以预测有助于纹理演化的底层双胞胎体积分数。 (c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号