...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening
【24h】

Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening

机译:SOBOLEV用于可解释的弹性可塑性模型的热力学知识神经网络,水平设定硬化

获取原文
获取原文并翻译 | 示例
           

摘要

We introduce a deep learning framework designed to train smoothed elastoplasticity models with interpretable components, such as the stored elastic energy function, yield surface, and plastic flow that evolve based on a set of deep neural network predictions. By recasting the yield function as an evolving level set, we introduce a deep learning approach to deduce the solutions of the Hamilton-Jacobi equation that governs the hardening/softening mechanism. This machine learning hardening law may recover any classical hand-crafted hardening rules and discover new mechanisms that are either unbeknownst or difficult to express with mathematical expressions. Leveraging Sobolev training to gain control over the derivatives of the learned functions, the resultant machine learning elastoplasticity models are thermodynamically consistent, interpretable, while exhibiting excellent learning capacity. Using a 3D FFT solver to create a polycrystal database, numerical experiments are conducted and the implementations of each component of the models are individually verified. Our numerical experiments reveal that this new approach provides more robust and accurate forward predictions of cyclic stress paths than those obtained from black-box deep neural network models such as the recurrent neural network, the 1D convolutional neural network, and the multi-step feed-forward model. (C) 2021 Elsevier B.V. All rights reserved.
机译:我们介绍了一个深入的学习框架,旨在用可解释的部件训练平滑的弹塑性模型,例如存储的弹性能量功能,屈服表面和基于一组深神经网络预测而发展的塑性流量。通过重新推出屈服函数作为演变的水平集,我们介绍了一种深入的学习方法来推断出汉密尔顿 - 雅各的方程的解决方案,管辖硬化/软化机制。这款机器学习硬化法可能会恢复任何经典手工制作的硬化规则,并发现与数学表达式表达或难以表达的新机制。利用SoboLev培训来控制通过学习功能的衍生物来控制,所得到的机器学习弹性塑性模型是热力学上一致的,可解释的,同时表现出优异的学习能力。使用3D FFT求解器来创建多晶数据库,进行数值实验,并且单独验证模型的每个组件的实现。我们的数值实验表明,这种新方法提供了比从黑盒深神经网络模型(如经常性神经网络,1D卷积神经网络)获得的那些更强大和准确的前向预测,例如从黑盒深度神经网络模型,以及多步馈送 - 前向模型。 (c)2021 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号