...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A consistent finite element approach for dynamic crack propagation with explicit time integration
【24h】

A consistent finite element approach for dynamic crack propagation with explicit time integration

机译:具有明确时间集成的动态裂纹传播一致的有限元方法

获取原文
获取原文并翻译 | 示例
           

摘要

The concept of the partition of unity (PU) enabled the development of nodal enrichment strategies, such as the Extended Finite Element Method (XFEM) and Generalised Finite Element Method (GFEM), for realistic simulations of structural behaviour with applications to both static and dynamic problems. Nonetheless, the majority of existing methodologies still inherit instability issues for arbitrary discontinuity geometries when using an explicit time integration scheme. To address this, the discrete strong discontinuity approach is herein developed for the simulation of dynamic crack propagation. The formulation is fully variationally consistent and a new mapping approach is introduced to embed the rigid body movements associated with discontinuities while keeping the critical time step bounded. Multiple discontinuities within a single element are also considered for the accurate modelling of crack branching. The stability of the new technique is first verified in one-and two-dimensional elements. Next, the accuracy and efficiency are validated with structural examples including tensile and mixed-mode loadings. A concrete L-specimen, where different loading rates produce significant variations in failure patterns and strength, is also considered. Results show the good overall agreement with experimental data and other numerical studies available in the literature. The new formulation, however, is able to capture complex crack propagation phenomena, such as crack branching, without any specific additional criterion (e.g. based on crack tip velocity). The formulation presented in this paper is, to the best of the authors' knowledge, the first PU-based consistent finite element with intrinsically bounded critical time step for explicit time integration. (C) 2020 Elsevier B.V. All rights reserved.
机译:UNITY(PU)分区的概念使得扩展有限元方法(XFEM)和广义有限元方法(GFEM)的开发实现了节点浓缩策略,用于静态和动态应用的结构行为的现实模拟问题。尽管如此,大多数现有方法仍然在使用显式时间集成方案时继承任意不连续几何形状的稳定性问题。为了解决这个问题,在本文中开发了离散的强不连续性方法用于模拟动态裂纹传播。制剂完全变化,并引入了一种新的映射方法,以嵌入与不连续相关的刚性体移动,同时保持临界时间步长。还考虑了单个元素内的多个不连续性,用于裂缝分支的准确建模。首先在单维元件中验证新技术的稳定性。接下来,通过包括拉伸和混合模式载荷的结构示例验证精度和效率。还考虑了一种混凝土L标本,其中不同的装载率产生显着变化的故障模式和强度。结果显示了与文献中可用的实验数据和其他数值研究的良好总体协议。然而,新的制剂能够捕获复杂的裂缝繁殖现象,例如裂缝分支,而没有任何特定的附加标准(例如,基于裂缝尖端速度)。本文介绍的制剂是,据作者的知识,第一个PU的一致有限元,具有用于明确时间集成的本质上有界临界时间步骤。 (c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号