首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A Newton solver for micromorphic computational homogenization enabling multiscale buckling analysis of pattern-transforming metamaterials
【24h】

A Newton solver for micromorphic computational homogenization enabling multiscale buckling analysis of pattern-transforming metamaterials

机译:一种用于微晶体计算均质化的牛顿求解器,从而实现了模式变换超材料的多尺度屈曲分析

获取原文
获取原文并翻译 | 示例
           

摘要

Mechanical metamaterials feature engineered microstructures designed to exhibit exotic, and often counter-intuitive, effective behaviour such as negative Poisson's ratio or negative compressibility. Such a specific response is often achieved through instability-induced transformations of the underlying periodic microstructure into one or multiple patterning modes. Due to a strong kinematic coupling of individual repeating microstructural cells, non-local behaviour and size effects emerge, which cannot easily be captured by classical homogenization schemes. In addition, the individual patterning modes can mutually interact in space as well as in time, while at the engineering scale the entire structure can buckle globally. For efficient numerical predictions of macroscale engineering applications, a micromorphic computational homogenization scheme has recently been developed (Roko et al., J. Mech. Phys. Solids 123, 119-137, 2019). Although this framework is in principle capable of accounting for spatial and temporal interactions between individual patterning modes, its implementation relied on a gradient -based quasi-Newton solution technique. This solver is suboptimal because (i) it has sub-quadratic convergence, and (ii) the absence of Hessians does not allow for proper bifurcation analyses. Given that mechanical metamaterials often rely on controlled instabilities, these limitations are serious. Addressing them will reduce the dependency of the solution on the initial guess by perturbing the system towards the correct deformation when a bifurcation point is encountered. Eventually, this enables more accurate and reliable modelling and design of metamaterials. To achieve this goal, a full Newton method, entailing all derivations and definitions of the tangent operators, is provided in detail in this paper. The construction of the macroscopic tangent operator is not straightforward due to specific model assumptions on the decomposition of the underlying displacement field pertinent to the micromorphic framework, involving orthogonality constraints. Analytical expressions for the first and second variation of the total potential energy are given, and the complete algorithm is listed. The developed methodology is demonstrated with two examples in which a competition between local and global buckling exists and where multiple patterning modes emerge. The numerical results indicate that local to global buckling transition can be predicted within a relative error of 6% in terms of the applied strains. The expected pattern combinations are triggered even for the case of multiple patterns. (C) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
机译:机械超材料特征设计设计用于表现出异国情调,通常是反直观的,有效的行为,如负泊松的比例或负压性。通常通过潜在的周期性微观结构的不稳定变换成一个或多个图案化模式来实现这种特定响应。由于个体重复的微结构细胞的强运动耦合,出现了非局部行为和尺寸效应,其不能通过经典均匀化方案容易地捕获。此外,单独的图案化模式可以在空间和时间内相互交互,而在工程尺度上,整个结构可以在全球上弯曲。为了高效的宏观工程应用的数值预测,最近开发了微立晶计算均质化方案(ROKO等,J. MECH。物理。实体123,119-137,2019)。虽然该框架原则上能够考虑各个图案模式之间的空间和时间相互作用,但其实现依赖于梯度基位的准牛顿解决方案技术。该求解器是次优的,因为(i)它具有亚二次收敛,并且(ii)缺乏Hessians不允许适当的分支分析。鉴于机械超材料经常依赖受控稳定性,这些限制是严重的。通过在遇到分叉点时,通过对系统朝向正确的变形扰乱系统来解决解决方案对初始猜测的依赖性。最终,这使得可以更准确可靠的超材料的建模和设计。为实现这一目标,在本文中详细介绍了一种完整的牛顿方法,需要切线运营商的所有衍生和定义。由于对微观框架相关的底层位移场的分解,宏观切线操作员的结构并不简单,涉及正交性约束。给出了总势能的第一和第二变型的分析表达,并列出了完整的算法。发达的方法有两个例子,其中存在局部和全球屈曲之间的竞争以及多种图案化模式出现的地方。数值结果表明,在施加的菌株方面,可以在6%的相对误差内预测全局屈曲转换。即使对于多种模式的情况,也会触发预期的模式组合。 (c)2020提交人。由elsevier b.v发布。这是CC的开放访问文章,许可证(http://creativecommons.org/licenses/by/4.0/)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号