...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Deep generative modeling for mechanistic-based learning and design of metamaterial systems
【24h】

Deep generative modeling for mechanistic-based learning and design of metamaterial systems

机译:基于机械学习与设计的深度生成型号

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Metamaterials are emerging as a new paradigmatic material system to render unprecedented and tailorable properties for a wide variety of engineering applications. However, the inverse design of metamaterial and its multiscale system is challenging due to high-dimensional topological design space, multiple local optima, and high computational cost. To address these hurdles, we propose a novel data-driven metamaterial design framework based on deep generative modeling. A variational autoencoder (VAE) and a regressor for property prediction are simultaneously trained on a large metamaterial database to map complex microstructures into a low-dimensional, continuous, and organized latent space. We show in this study that the latent space of VAE provides a distance metric to measure shape similarity, enable interpolation between microstructures and encode meaningful patterns of variation in geometries and properties. Based on these insights, systematic data-driven methods are proposed for the design of microstructure, graded family, and multiscale system. For microstructure design, the tuning of mechanical properties and complex manipulations of microstructures are easily achieved by simple vector operations in the latent space. The vector operation is further extended to generate metamaterial families with a controlled gradation of mechanical properties by searching on a constructed graph model. For multiscale metamaterial systems design, a diverse set of microstructures can be rapidly generated using VAE for target properties at different locations and then assembled by an efficient graph-based optimization method to ensure compatibility between adjacent microstructures. We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems that achieve desired distortion behaviors. (C) 2020 Published by Elsevier B.V.
机译:超材料作为一种新的范式材料系统,可以为各种工程应用提供前所未有和可定制的性质。然而,由于高维地拓扑设计空间,多种本地最佳优化和高计算成本,超级材料及其多尺度系统的逆设计具有挑战性。为解决这些障碍,我们提出了一种基于深度生成造型的新型数据驱动的超材料设计框架。变形AutiaceDer(VAE)和用于性质预测的回归线在大型超材料数据库上同时培训,以将复杂的微结构映射到低维,连续和有组织的潜空间。我们在这项研究中展示了VAE的潜在空间提供了距离度量来测量形状相似性,使能微结构之间的内插,并编码几何形状和属性的有意义的变化模式。基于这些见解,提出了系统的数据驱动方法,用于设计微观结构,分级族和多尺度系统。对于微观结构设计,通过在潜伏空间中的简单矢量操作,容易实现机械性能的调整和微结构的复杂操纵。进一步扩展了向量操作以通过在构造的图形模型上搜索具有机械特性的受控灰度的超级家族。对于多尺度的超材料系统设计,可以使用VAE在不同位置的目标特性迅速产生多种微结构,然后通过高效的基于图的优化方法组装,以确保相邻微结构之间的兼容性。我们通过设计达到所需失真行为的功能渐变和异质的超材料系统来展示我们的框架。 (c)2020由elsevier b.v发布。

著录项

  • 来源
    《Computer Methods in Applied Mechanics and Engineering》 |2020年第2期|113377.1-113377.23|共23页
  • 作者单位

    Shanghai Jiao Tong Univ Sch Mech Engn Shanghai Key Lab Digital Mfg Thin Walled Struct State Key Lab Mech Syst & Vibrat Shanghai Peoples R China|Northwestern Univ Dept Mech Engn 2145 Sheridan RD Tech B224 Evanston IL 60201 USA;

    Northwestern Univ Dept Mech Engn 2145 Sheridan RD Tech B224 Evanston IL 60201 USA;

    Northwestern Univ Dept Mech Engn 2145 Sheridan RD Tech B224 Evanston IL 60201 USA;

    Shanghai Jiao Tong Univ Sch Design Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn Shanghai Key Lab Digital Mfg Thin Walled Struct State Key Lab Mech Syst & Vibrat Shanghai Peoples R China;

    Northwestern Univ Dept Mech Engn 2145 Sheridan RD Tech B224 Evanston IL 60201 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Metamaterial; Data-driven design; Deep generative model; Functionally graded material; Multiscale design; Boundary connectivity;

    机译:超材料;数据驱动设计;深度生成模型;功能分级材料;多尺度设计;边界连接;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号