...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Feature-preserving rational Bezier triangles for isogeometric analysis of higher-order gradient damage models
【24h】

Feature-preserving rational Bezier triangles for isogeometric analysis of higher-order gradient damage models

机译:保留特征的有理Bezier三角形,用于高阶梯度损伤模型的等几何分析

获取原文
获取原文并翻译 | 示例

摘要

The computational approach of modeling smeared damage with quadrilateral elements in isogeometric analysis (e.g., using NURBS or T-splines) has limitations in scenarios where complicated geometries are involved. In particular, the higher-order smoothness that emerges due to the inclusion of higher-order terms in the nonlocal formulation is not often easy to preserve with multiple NURBS patches or unstructured T-splines where reduced continuity is observed at patch interfaces and extraordinary points. This defect can be circumvented by the use of rational Bezier triangles for domain triangulation. In particular, rational Bezier triangles increase the flexibility in the discretization of arbitrary spaces and facilitate the handling of singular points that result from sharp changes in curvature. Moreover, the process of mesh generation can be completely automated and does not require any user intervention. A Delaunay-based feature-preserving discretization coupled with a local refinement technique is implemented to capture small geometric features and locally resolve areas of damage propagation. Additionally, we adopt an implicit higher-order gradient damage model in order to amend the non-physical mesh dependency issue exhibited in continuum damage analysis. For the solution of the fourth- and sixth-order gradient damage models, Lagrange multipliers are leveraged to elevate the global smoothness to any desired order in an explicit manner. The solution algorithm is initialized with the cylindrical arc-length control and switches to a dissipation-based arc-length control for better numerical stability as the damage evolves. Numerical examples with singularities demonstrate improvements in terms of efficiency and accuracy, as compared to the damage models represented by Powell-Sabin B-splines. (C) 2019 Elsevier B.V. All rights reserved.
机译:在等几何分析中使用四边形元素模拟涂抹损伤的计算方法(例如,使用NURBS或T样条曲线)在涉及复杂几何形状的场景中存在局限性。特别是,由于在多个非NURBS面片或非结构化T样条中非均匀公式中包含高阶项而出现的高阶平滑度通常不容易保留,因为在这些面中,在面片接口和非凡点处观察到连续性降低。可以通过使用有理Bezier三角形进行区域三角测量来规避此缺陷。特别是,有理贝塞尔曲线三角形增加了任意空间离散化的灵活性,并简化了因曲率急剧变化而导致的奇异点的处理。此外,网格生成的过程可以完全自动化,不需要任何用户干预。实现了基于Delaunay的特征保留离散化与局部改进技术,以捕获小的几何特征并局部解决损伤传播的区域。此外,我们采用隐式高阶梯度损伤模型,以修正连续损伤分析中出现的非物理网格依赖问题。对于四阶和六阶梯度损伤模型的求解,利用拉格朗日乘数以显式方式将全局平滑度提升到任何所需的阶数。解算法用圆柱弧长控制进行初始化,并切换到基于耗散的弧长控制,以随着损伤的发展获得更好的数值稳定性。与Powell-Sabin B样条曲线表示的损伤模型相比,具有奇异性的数值示例证明了效率和准确性方面的改进。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号