首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A finite element implementation of a growth and remodeling model for soft biological tissues: Verification and application to abdominal aortic aneurysms
【24h】

A finite element implementation of a growth and remodeling model for soft biological tissues: Verification and application to abdominal aortic aneurysms

机译:软性生物组织生长和重塑模型的有限元实现:验证和在腹主动脉瘤中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

The general framework for growth and remodeling (G&R) of soft biological tissues shows a great potential for expanding our current understanding of biochemical and biomechanical processes, and to predict disease progression. Yet, its use is held up by the lack of a reliable and verified 3D finite element (FE) implementation capable of describing G&R processes of soft biological tissues. Thus, in this study we present the implementation of a 3D constrained mixture G&R model in a FE analysis program. In contrast to traditional finite strain FE formulations, we show that the volumetric-isochoric decomposition not only introduces numerical problems and instabilities, it also provides unphysical results. As a verification of the implementation we present adaptations of realistic aorta models to changes in the hemodynamics, i.e. changes in blood flow and pressure. The obtained results show a correspondence with the membrane theory and with clinical expectations. Application to a fusiform aneurysm model provided realistic growth rates, evolution of thickness and stress, whereas changes in the kinetic parameters show good agreement to animal models. Finally, we present simulated expansions of an asymmetric fusiform aneurysm. Non-axisymmetric elastin degradation increased the curvature of the aorta, which is characteristic for abdominal aortic aneurysms. (C) 2019 Elsevier B.V. All rights reserved.
机译:软性生物组织的生长和重塑(G&R)的一般框架显示出巨大的潜力,可以扩大我们对生化和生物力学过程的当前了解,并预测疾病的进展。但是,由于缺乏能够描述软生物组织的G&R过程的可靠且经过验证的3D有限元(FE)实现,因此无法使用它。因此,在这项研究中,我们介绍了有限元分析程序中3D约束混合G&R模型的实现。与传统的有限应变有限元公式相反,我们证明了等体积体积分解不仅引入了数值问题和不稳定性,而且还提供了非物理结果。作为对实施方式的验证,我们提出了现实的主动脉模型对血液动力学变化的适应性,即血液流量和压力的变化。获得的结果表明与膜理论和临床期望相符。梭状动脉瘤模型的应用提供了现实的增长率,厚度和应力的演变,而动力学参数的变化与动物模型显示出很好的一致性。最后,我们提出了不对称梭状动脉瘤的模拟扩展。非轴对称弹性蛋白降解增加了主动脉曲率,这是腹主动脉瘤的特征。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号