首页> 外文期刊>Computer Aided Geometric Design >The cubic de Casteljau construction and Riemannian cubics
【24h】

The cubic de Casteljau construction and Riemannian cubics

机译:三次de Casteljau构造和黎曼三次立方

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The classical de Casteljau construction of cubic polynomials in Euclidean space E-m has been generalised to Riemannian settings since the 1980's. The generalisations replace line segments by geodesic arcs, yielding elegant methods for Hermite interpolation in Riemannian manifolds M, such as spheres and rotation groups. Unlike the classical algorithm however, it is not so easy to analyse the resulting curves. Even when M is the unit m-sphere S(m )in Em+1, the mathematical properties of generalised cubic de Casteljau curves are not well understood.There is another class of curves called Riemannian cubics which can also be used for Hermite interpolation in Riemannian manifolds. Unlike generalised cubic de Casteljau curves, Riemannian cubics are defined as critical curves for a variational problem, and their mathematical properties are much better understood. Riemannian cubics are also more difficult to construct, whereas generalised cubic de Casteljau curves have a simple geometrical construction.It is well-known that, when M is curved, generalised cubic de Casteljau curves and Riemannian cubics are different. On the other hand their general appearance is somewhat similar. In the classical situation where M = E-m, both cubic de Casteljau curves and Riemannian cubics reduce to curves that are cubic polynomial in each coordinate.The present paper analyses the differences between generalised cubic de Casteljau curves and Riemannian cubics. We also modify the generalised cubic de Casteljau algorithm to yield curves that are much closer to Riemannian cubics. In this way the elegant geometry of the de Casteljau algorithm is adjusted to better approximate a class of curves that are better understood from a mathematical point of view. Examples are given of the modified cubic de Casteljau algorithm for curves in the 2-dimensional unit sphere S-2 subset of E-3, and in the special orthogonal group SO(3) with bi-invariant Riemannian metric. (C) 2019 Elsevier B.V. All rights reserved.
机译:自1980年代以来,欧几里得空间E-m中三次多项式的经典de Casteljau构造已推广到黎曼环境。泛化用测地弧替换了线段,从而产生了用于黎曼流形M(例如球体和旋转组)中的Hermite插值的优雅方法。但是,与经典算法不同,分析结果曲线并非那么容易。即使当M是Em + 1中的单位m球体S(m)时,广义三次de Casteljau曲线的数学性质也无法很好地理解。还有另一类称为黎曼三次曲线的曲线也可以用于Hermite插值黎曼流形。与广义三次方de Casteljau曲线不同,黎曼三次方被定义为变分问题的临界曲线,并且它们的数学性质得到了更好的理解。黎曼三次方程也更难以构造,而广义三次de Casteljau曲线具有简单的几何构造。众所周知,当M弯曲时,广义三次de Casteljau曲线和黎曼三次方是不同的。另一方面,它们的总体外观有些相似。在M = E-m的经典情况下,三次de Casteljau曲线和黎曼三次曲线都简化为每个坐标中三次多项式的曲线。本文分析了广义三次de Casteljau曲线与黎曼三次曲线之间的差异。我们还修改了广义三次de Casteljau算法,以产生更接近黎曼三次曲线的曲线。通过这种方式,可以调整de Casteljau算法的优美几何形状,以更好地近似从数学的角度可以更好地理解的一类曲线。给出了改进的三次de Casteljau算法的示例,该算法适用于E-3的二维单位球面S-2子集以及具有双不变黎曼度量的特殊正交群SO(3)。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号