首页> 外文期刊>Computer Aided Geometric Design >Novel and efficient computation of Hilbert-Huang transform on surfaces
【24h】

Novel and efficient computation of Hilbert-Huang transform on surfaces

机译:曲面上希尔伯特-黄变换的新颖高效计算

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Hilbert-Huang Transform (HHT) has proven to be extremely powerful for signal processing and analysis in 1D time series, and its generalization to regular tensor-product domains (e.g., 2D and 3D Euclidean space) has also demonstrated its widespread utilities in image processing and analysis. Compared with popular Fourier transform and wavelet transform, the most prominent advantage of Hilbert-Huang Transform (HHT) is that, it is a fully data-driven, adaptive method, especially valuable for handling non-stationary and nonlinear signals. Two key technical elements of Hilbert-Huang transform are: (1) Empirical Mode Decomposition (EMD) and (2) Hilbert spectra computation. HHT's uniqueness results from its capability to reveal both global information (i.e., Intrinsic Mode Functions (IMFs) enabled by EMD) and local information (i.e., the computation of local frequency, amplitude (energy) and phase information enabled by Hilbert spectra computation) from input signals. Despite HHT's rapid advancement in the past decade, its theory and applications on surfaces remain severely under-explored due to the current technical challenge in conducting Hilbert spectra computation on surfaces. To ameliorate, this paper takes a new initiative to compute the Riesz transform on 3D surfaces, a natural generalization of Hilbert transform in higher-dimensional cases, with a goal to make the theoretic breakthrough. The core of our theoretic and computational framework is to fully exploit the relationship between Riesz transform and fractional Laplacian operator, which can enable the computation of Riesz transform on surfaces via eigenvalue decomposition of Laplacian matrix. Moreover, we integrate the techniques of EMD and our newly-proposed Riesz transform on 3D surfaces by monogenic signals to compute Hilbert spectra, which include the space-frequency-energy distribution of signals defined over 3D surfaces and characterize key local feature information (e.g., instantaneous frequency, local amplitude, and local phase). Experiments and applications in spectral geometry processing and prominent feature detection illustrate the effectiveness of the current computational framework of HHT on 3D surfaces, which could serve as a solid foundation for upcoming, more serious applications in graphics and geometry computing fields.
机译:Hilbert-Huang变换(HHT)已被证明对一维时间序列的信号处理和分析功能极为强大,并且其对常规张量积域(例如2D和3D欧几里德空间)的泛化也证明了其在图像处理中的广泛应用和分析。与流行的傅立叶变换和小波变换相比,希尔伯特-黄变换(HHT)的最大优势在于,它是一种完全由数据驱动的自适应方法,对于处理非平稳和非线性信号特别有用。 Hilbert-Huang变换的两个关键技术要素是:(1)经验模式分解(EMD)和(2)Hilbert谱计算。 HHT的独特性来自于它能够从以下方面揭示全局信息(即,由EMD启用的本征模式功能(IMF))和本地信息(即,由希尔伯特频谱计算启用的本地频率,幅度(能量)和相位信息的计算)输入信号。尽管HHT在过去的十年中取得了飞速的发展,但由于在表面上进行希尔伯特光谱计算的当前技术挑战,其在表面上的理论和应用仍然受到严重的探索。为了改善这一点,本文采取了一项新的举措来计算3D曲面上的Riesz变换,这是高维情况下Hilbert变换的自然概括,旨在实现理论上的突破。我们的理论和计算框架的核心是充分利用Riesz变换和分数Laplacian算子之间的关系,这可以通过Laplacian矩阵的特征值分解实现表面Riesz变换的计算。此外,我们将EMD技术和我们新提出的Riesz变换技术通过单基信号整合到3D表面上,以计算希尔伯特光谱,包括在3D表面上定义的信号的时空能量分布并表征关键的局部特征信息(例如,瞬时频率,局部幅度和局部相位)。光谱几何处理和突出特征检测中的实验和应用说明了3D表面上当前HHT计算框架的有效性,这可以为图形和几何计算领域中即将出现的更重要的应用奠定坚实的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号