首页> 外文期刊>Computational Geosciences >An efficient hybrid-grid crossflow equilibrium model for field-scale fractured reservoir simulation
【24h】

An efficient hybrid-grid crossflow equilibrium model for field-scale fractured reservoir simulation

机译:用于现场规模裂缝储层模拟的高效混合网格错流平衡模型

获取原文
获取原文并翻译 | 示例
       

摘要

Multiphase flow simulation in fractured reservoirs at field scale is a significant challenge. Despite recent advances and a wide range of applications in both hydrology and hydrocarbon reservoir engineering, discussing efficient methods that cover computational complexity, accuracy, and flexibility aspects is still of paramount importance for a better understanding of these complex media. In this work, we present a new method that handles both the topological and computational complexities of fractures, taking into consideration advantages of various existing approaches, which include hybrid-grid and crossflow equilibrium models. The hybrid-grid (HG) model consists of representing fractures as lower-dimensional objects that still are represented as control volumes in a computational grid. The HG model is equivalent to a single-porosity model with a practical solution for the small control volumes at the intersection between fractures; however, the overall simulation run time is still dominated by the remaining fracture small control volumes. To overcome single-porosity computational challenges, a crossflow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks can be employed. The CFE model consists of combining fractures with a small fraction of the neighborhood matrix blocks on either side in larger elements to achieve a better computational efficiency than conventional single-porosity models. The implementation of a CFE model at field scale is not practical because of the fracture topological challenges associated with the construction of an accurate computational grid for the CFE elements. In this work, we propose a method based on a combination of HG and CFE models to overcome the challenges associated with the HG fracture small control volumes and field-scale CFE computational grid construction. First, we assess the performance of the existing CFE model, and we propose an improved model. In addition, we suggest an input data handling method that is sufficient to account for fractional flow inside the CFE elements for flow in homogeneous fractured reservoirs without the need of any change in the simulator. Second, we describe the uniqueness of the proposed method, and we discuss different numerical examples to assess both the accuracy and computational efficiency. The results obtained are very accurate, and, computationally, one to two orders of magnitude speedup can be achieved. The improved CFE results are superior over the traditional CFE model. Combined with the HG model, the results are significantly improved while retaining a very good performance.
机译:在现场规模的裂缝性储层中进行多相流模拟是一项重大挑战。尽管有最新的进展并且在水文学和油气藏工程学中都有广泛的应用,但是对于更好地理解这些复杂介质,讨论涵盖计算复杂性,准确性和灵活性方面的有效方法仍然至关重要。在这项工作中,我们提出了一种新的方法来处理裂缝的拓扑和计算复杂性,同时考虑到各种现有方法(包括混合网格和错流平衡模型)的优势。混合网格(HG)模型包括将裂缝表示为低维对象,但仍将其表示为计算网格中的控制体积。 HG模型等效于单孔隙度模型,具有针对裂缝之间交点处的小控制体积的实用解决方案。但是,总的模拟运行时间仍由剩余的裂缝小控制量决定。为了克服单孔计算难题,可以采用离散裂缝与矩阵块中较小邻域之间的错流平衡(CFE)概念。 CFE模型包括将裂缝与两侧较大面积的邻域矩阵块中的一小部分相结合,以实现比常规单孔隙度模型更好的计算效率。由于与CFE元素的精确计算网格的构建相关的裂缝拓扑挑战,因此在现场规模上实施CFE模型是不切实际的。在这项工作中,我们提出了一种基于HG和CFE模型相结合的方法,以克服与HG裂缝小控制量和现场规模CFE计算网格构建相关的挑战。首先,我们评估现有CFE模型的性能,并提出一种改进的模型。此外,我们建议使用一种输入数据处理方法,该方法足以解决CFE单元内部的分流问题,从而使均匀裂缝性油藏中的水流无需模拟器进行任何更改。其次,我们描述了所提出方法的唯一性,并讨论了不同的数值示例来评估准确性和计算效率。获得的结果非常准确,并且在计算上可以实现一到两个数量级的加速。改进的CFE结果优于传统的CFE模型。结合HG模型,结果得到了显着改善,同时保持了很好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号