首页> 外文期刊>Computational Geosciences >Enabling numerically exact local solver for waveform inversion-a low-rank approach
【24h】

Enabling numerically exact local solver for waveform inversion-a low-rank approach

机译:为波形反转启用数值精确的局部求解器-低秩方法

获取原文
获取原文并翻译 | 示例
       

摘要

As in many fields, in seismic imaging, the data in the field is collected over a relatively large medium even though only a part of that medium is truly of interest. This results in significant waste in computation as a typical inversion algorithm requires many solutions of the wave equation throughout the entire domain, even if only a small part of the domain is being updated. One way to mitigate this is to use a numerically exact local wave equation solver to perform waveform inversions in an area of interest, where the idea is to compute accurate solutions of the wave equation within a subdomain of interest. Although such solvers exist, many require the computation of Green's function matrices in the background domain. For large-scale seismic data acquisition, the computation of the Green's function matrices is prohibitively expensive since it involves solving thousands of partial differential equations in the background model. To mitigate this, in this work, we propose to exploit the low-rank structure of the full subsurface Green's function. Using carefully selected 2D stylized models, we first show that the full subsurface Green's function tensor organized as a matrix exhibits the low-rank structure in a transform domain. We then propose a randomized singular value decomposition-based framework to compute the low-rank approximation of the Green's functions, where the cost of wave equation solves depends on the rank of the underlying Green's function matrix instead of the number of grid points at the surface of the background model and on the boundary of the local domain. Next, we validate the proposed framework by performing time-lapse waveform inversion using the 2D Marmousi model. Finally, we demonstrate a rank-minimization-based framework to compute the low-rank factorized form of the Green's function matrices in large-scale 3D seismic data acquisition.
机译:像在许多领域中一样,在地震成像中,即使真正真正感兴趣的只是一部分介质,也是通过相对较大的介质收集的。由于典型的反演算法在整个域中都需要波动方程的许多解决方案,因此即使只对域的一小部分进行了更新,也会导致计算上的大量浪费。减轻这种情况的一种方法是使用数值精确的局部波动方程求解器在目标区域执行波形求逆,其思想是在目标子域内计算波动方程的精确解。尽管存在这样的求解器,但是许多求解器需要在背景域中计算格林函数矩阵。对于大规模地震数据采集而言,格林函数矩阵的计算费用过高,因为它涉及在背景模型中求解数千个偏微分方程。为了减轻这种情况,在这项工作中,我们建议利用整个地下格林函数的低阶结构。使用精心选择的2D风格化模型,我们首先显示组织为矩阵的完整次表面Green函数张量在变换域中展现出低秩结构。然后,我们提出一个基于随机奇异值分解的框架来计算格林函数的低秩逼近,其中波动方程求解的成本取决于底层格林函数矩阵的秩,而不是表面上的网格点数背景模型的局部区域边界上。接下来,我们通过使用2D Marmousi模型执行延时波形反演来验证所提出的框架。最后,我们展示了一种基于等级最小化的框架,可用于在大规模3D地震数据采集中计算格林函数矩阵的低等级分解形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号