首页> 外文期刊>Computational Geosciences >Adaptive dynamic/quasi-static pore network model for efficient multiphase flow simulation
【24h】

Adaptive dynamic/quasi-static pore network model for efficient multiphase flow simulation

机译:高效的多相流模拟自适应动态/准静态孔隙网络模型

获取原文
获取原文并翻译 | 示例
       

摘要

Pore-scale simulation is increasingly used to study various phenomena that cannot be reproduced by conventional Darcy-based simulators. Direct numerical simulation on systems larger than a few millimeters is too computationally demanding. Pore network modeling (PNM) is a practical way to study the flow at pore scale for a representative elementary volume (REV) in a reasonable time. Pore network models can be divided into dynamic and quasi-static models. Dynamic models explicitly consider the competition between capillary and viscous forces. As they require pressure gradient calculation, they can be computationally expensive. Quasi-static models assume that the flow is only driven by capillary forces and avoids the need for pressure computations. Although they are very computationally efficient, the usage of these models is limited to capillary-dominated flow regimes obtained generally at low capillary numbers. We propose to combine the two approaches in an adaptive model, taking advantage of the speed of a quasi-static algorithm when the flow is governed by capillary forces, and that can simulate viscous effects when they are significant. We propose a criterion to localize the pressure solution in important areas to enhance the computational efficiency of the algorithm even in viscous dominated regimes. In this paper, we first describe our adaptive pore network model. Then, we show that using the capillary number as a switching criterion is not good enough to characterize the domain where the flow is controlled by capillary forces. Therefore, we present a newly defined criterion to switch between the dynamic and quasi-static flow regimes. Finally, we present several test cases where we show that the adaptive algorithm can considerably improve the computational performance of the pore network simulator without losing accuracy of the solution by treating large regions of models with the quasi-static algorithm. For capillary-dominated regimes, the observed speed-up can reach 16,000 for one million-node 3D networks. For viscous dominated regimes, the speed-up can reach 43 for one million-node 3D networks.
机译:孔尺度模拟越来越多地用于研究传统的基于达西的模拟器无法再现的各种现象。在大于几毫米的系统上进行直接数值模拟的计算量太大。孔网络建模(PNM)是一种在合理的时间内研究具有代表性基本体积(REV)的孔尺度流动的实用方法。孔网络模型可以分为动态模型和准静态模型。动态模型明确考虑了毛细管力和粘性力之间的竞争。由于它们需要压力梯度计算,因此它们在计算上可能很昂贵。准静态模型假定流量仅由毛细作用力驱动,并且无需进行压力计算。尽管它们在计算上非常有效,但是这些模型的使用仅限于通常在低毛细管数下获得的毛细管为主的流动状态。我们建议在自适应模型中将这两种方法结合起来,在流量受毛细作用力控制时利用准静态算法的速度,并且当它们显着时可以模拟粘性效应。我们提出了一个在重要区域定位压力解决方案的准则,即使在粘性主导条件下也可以提高算法的计算效率。在本文中,我们首先描述了自适应孔网络模型。然后,我们表明,使用毛细管数作为切换标准不足以表征由毛细管力控制流量的区域。因此,我们提出了一个新定义的标准,以在动态和准静态流动状态之间切换。最后,我们介绍了几个测试案例,这些案例表明,通过使用准静态算法处理模型的较大区域,自适应算法可以显着提高孔隙网络模拟器的计算性能,而不会降低解的准确性。对于以毛细管为主的体系,对于一百万个节点的3D网络,观察到的加速可以达到16,000。对于粘性为主的系统,一百万个节点的3D网络的加速可以达到43。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号