首页> 外文期刊>Composites Science and Technology >Multiscale image-based modelling of damage and fracture in carbon fibre reinforced polymer composites
【24h】

Multiscale image-based modelling of damage and fracture in carbon fibre reinforced polymer composites

机译:基于多尺度图像的碳纤维增强聚合物复合材料损伤和骨折建模

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper is the first to predict and then validate the overall stress-strain curve and the damage sequence comprising matrix cracking, interface debonding and fibre fracture against X-ray Computed Tomography (CT) observations for a multidirectional laminate. Until recently, numerical modelling of multi-directional multi-ply composites required idealised continuum mechanics models or idealised unit cell approaches (or homogenisation method) that cannot reliably capture property variations and the complex sequence of damage events that occur upon tensile loading. Here a multiscale 3D image-based model is used to simulate stochastic crack growth in a double-notch (-45 degrees/90 degrees/+45 degrees/0 degrees/-45 degrees/90 degrees/+45 degrees/0 degrees)s carbon fibre reinforced polymer (CFRP) composite specimen subjected to tensile loading monitored by time-lapse X-ray CT. The data integration approach involves: (1) parallel simulations of meso-scale elements (MeEs) for each ply for which the orientation of the individual fibres has been extracted from an X-ray CT image, (2) local hierarchical coupling of the MeEs into a macro-scale mechanical model of the test piece, and (3) the use of a random variation in material properties where micro structural details are not revealed by the X-ray CT characterisation method.Cohesive interface elements (CIEs) are used at both scales to predict the accumulation of interface damage and crack growth. The fibre-level modelling captures the detailed damage sequence and crack morphology including fibre/matrix debonding, sliding, matrix cracking and fibre fracture events. The multiscale model is validated by comparison with the measured tensile loading curve and the damage evolution recorded by the X-ray CT. This approach can reduce the reliance of certification on extensive heirarchical structural testing schemes from test piece to full-scale component.
机译:本文是第一个预测,然后验证整体应力 - 应变曲线和包含矩阵裂化,界面剥离和纤维骨折的损伤序列对多向层压板的X射线计算断层扫描(CT)观察。直到最近,多向多层复合材料的数值建模所需的理想化连续内力学模型或理想单元电池方法(或均质化方法)不能可靠地捕获性能变化和在拉伸负荷上发生的损伤事件的复杂序列。这里,基于多尺度3D图像的模型用于模拟双缺口(-45度/ 90度/ + 45度/ 0度/ -45度/ 90度/ + 45度/ 0度)的随机裂纹增长碳纤维增强聚合物(CFRP)复合标本经过延时X射线CT监测拉伸载荷。数据集成方法涉及:(1)对于每个层的Meso-Scale元件(MEE)的平行模拟,其中单个纤维的取向已经从X射线CT图像中提取,(2)MEES的局部分层耦合进入试验片的宏观尺度机械模型,(3)在X射线CT表征方法中不透露微结构细节的材料特性中的随机变化。使用界面元素(CIE)两种尺度来预测界面损伤的累积和裂纹增长。光纤级模型捕获详细的损伤序列和裂纹形态,包括光纤/矩阵剥离,滑动,基质裂缝和纤维骨折事件。通过与测量的拉伸负载曲线和X射线CT记录的损伤进化进行验证,验证多尺度模型。这种方法可以减少认证对来自测试件到全尺度组件的广泛的大型结构测试方案的依赖。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号