...
首页> 外文期刊>Composites Science and Technology >Nanoparticles with rationally designed isoelectronic traps as fillers significantly enhance breakdown strength and electrostatic energy density of polymer composites
【24h】

Nanoparticles with rationally designed isoelectronic traps as fillers significantly enhance breakdown strength and electrostatic energy density of polymer composites

机译:具有合理设计的异形疏水阀的纳米粒子作为填料显着提高了聚合物复合材料的击穿强度和静电能量密度

获取原文
获取原文并翻译 | 示例
           

摘要

Dielectric polymer nanocomposites with a high energy density and high charge-discharge efficiency are urgently in need which enable miniaturization of both electrical and electronic systems. One critical challenge for achieving a high energy density is the suppression of space charge movement in the composites which relates to the dielectric breakdown strength and thus energy density. Herein ZnS:O nanoparticles, in which a part of S in ZnS was substituted by O, were synthesized. The difference of electronegativity (Delta EN = 0.86) between S and O creates isoelectronic traps in the nanoparticles, which can to some extent bind space charges and suppress their movement. As a result, with ZnS:O as fillers and polyvinylidene fluoride (PVDF) as a host, the composites achieved a breakdown strength as high as 6000 kV/cm and an energy density of 14.4 J/cm(3) with 2.5 vol% ZnS:O nanoparticles, which are nearly twice and over three times respectively of those of the pure PVDF (E-b similar to 3183 kV/cm, 4.6 J/cm(3)), and also much higher than those of ZnS filled PVDF. Moreover, the dielectric loss and leakage current were effectively suppressed, leading to a high charge-discharge efficiency of up to 97%. The present work provides an efficient approach of modulating the dielectric and electric performance of nanocomposites by confining charge carriers in the isoelectric traps. The effect was investigated by calculation of electric field threshold and electron hopping distance. Finite element simulation was employed to understand the mechanism which vividly interprets the above phenomenon.
机译:迫切需要具有高能量密度和高电荷 - 放电效率的介电聚合物纳米复合材料,其能够实现电气和电子系统的小型化。实现高能量密度的一个临界挑战是抑制与介电击穿强度有关的复合材料中的空间电荷运动,从而涉及能量密度。在此ZnS:O纳米颗粒,其中ZnS中的一部分被O取代,得到O,被o取代。在S和O之间的电负性(Delta en = 0.86)的差异在纳米颗粒中产生异形疏水物,这可以在某种程度上结合空间充电并抑制它们的运动。结果,ZnS:O作为荷载物和聚偏二氟乙烯(PVDF)作为宿主,复合材料达到高达6000kV / cm的击穿强度和14.4J / cm(3)的能量密度,其中2.5 Vol%ZnS :o纳米颗粒分别是纯PVDF(EB类似于3183 kV / cm,4.6J / cm(3))的两次,分别三次,也远远高于填充PVDF的ZnS。此外,有效地抑制了介电损耗和漏电流,导致高电荷放电效率高达97%。本工作提供了一种通过在等电阱中限制电荷载流子来调节纳米复合材料的电介质和电性能的有效方法。通过计算电场阈值和电子跳距来研究效果。采用有限元模拟来了解生动地解释上述现象的机制。

著录项

  • 来源
    《Composites Science and Technology》 |2020年第jul28期|108201.1-108201.9|共9页
  • 作者单位

    Chinese Acad Sci Shenzhen Inst Adv Elect Mat Shenzhen Inst Adv Technol Shenzhen 518055 Guangdong Peoples R China|Univ Sci & Technol China Inst Nano Sci & Technol Suzhou 215123 Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Elect Mat Shenzhen Inst Adv Technol Shenzhen 518055 Guangdong Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Elect Mat Shenzhen Inst Adv Technol Shenzhen 518055 Guangdong Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Elect Mat Shenzhen Inst Adv Technol Shenzhen 518055 Guangdong Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Elect Mat Shenzhen Inst Adv Technol Shenzhen 518055 Guangdong Peoples R China|Univ Sci & Technol China Inst Nano Sci & Technol Suzhou 215123 Peoples R China;

    Univ Sci & Technol China CAS Key Lab Mat Energy Convers 96 Jinzhai Rd Hefei 230026 Anhui Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Elect Mat Shenzhen Inst Adv Technol Shenzhen 518055 Guangdong Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Elect Mat Shenzhen Inst Adv Technol Shenzhen 518055 Guangdong Peoples R China;

    Georgia Inst Technol Sch Mat Sci & Engn Atlanta GA 30332 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Isoelectronic traps; Dielectric breakdown strength; Energy density; Charge-discharge efficiency; Polymer nanocomposites; Space charges;

    机译:等电子陷阱;介电击穿强度;能量密度;充放电效率;聚合物纳米复合材料;空间收费;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号