...
首页> 外文期刊>Composites Science and Technology >Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite - Part I: Manual infiltration
【24h】

Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite - Part I: Manual infiltration

机译:微囊增韧环氧复合材料疲劳裂纹的延缓和修复-第一部分:手动渗透

获取原文
获取原文并翻译 | 示例

摘要

As a first step towards a new crack healing methodology for cyclic loading, this paper examines two promising crack-tip shielding mechanisms during fatigue of a microcapsule toughened epoxy. Artificial crack closure is achieved by injecting precatalyzed monomer into the crack plane to form a polymer wedge at the crack tip. The effect of wedge geometry is also considered, as dictated by crack loading conditions during infiltration. Crack-tip shielding by a polymer wedge formed with the crack held open under the maximum cyclic loading condition (K_(max)) yields temporary crack arrest and extends the fatigue life by more than 20 times. Hydro-dynamic pressure and viscous damping as a mechanism of crack-tip shielding are also investigated by injecting mineral oil into the crack plane. Viscous fluid flow leads to retardation of crack growth independent of initial loading conditions. The success of these mechanisms for retarding fatigue crack growth demonstrates the potential for in situ self-healing of fatigue damage.
机译:作为迈向循环载荷的新裂纹修复方法的第一步,本文研究了微囊增韧环氧树脂疲劳期间两种有希望的裂纹尖端屏蔽机制。通过将预催化的单体注入裂纹平面以在裂纹尖端处形成聚合物楔形体来实现人工裂纹闭合。还应考虑楔形几何形状的影响,这取决于渗透过程中的裂纹载荷条件。通过在最大循环载荷条件下(K_(max))保持裂纹开裂的聚合物楔形体形成的裂纹尖端,可以暂时阻止裂纹,并将疲劳寿命延长20倍以上。通过向裂缝平面注入矿物油,研究了流体动力压力和粘性阻尼作为裂缝尖端屏蔽的机理。粘性流体流动导致裂纹扩展的延迟,与初始载荷条件无关。这些阻止疲劳裂纹扩展的机制的成功证明了疲劳损伤就地自我修复的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号