...
首页> 外文期刊>Composites Science and Technology >Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression
【24h】

Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression

机译:纤维增强聚合物复合材料在横向拉伸和压缩下的微观破坏机理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The mechanical behavior of unidirectional fiber-reinforced polymer composites subjected to tension and compression perpendicular to the fibers is studied using computational micromechanics. The representative volume element of the composite microstructure with random fiber distribution is generated, and the two dominant damage mechanisms experimentally observed - matrix plastic deformation and interfacial debonding - are included in the simulation by the extended Drucker-Prager model and cohesive zone model respectively. Progressive failure procedure for both the matrix and interface is incorporated in the simulation, and ductile criterion is used to predict the damage initiation of the matrix taking into account its sensitivity to triaxial stress state. The simulation results clearly reveal the damage process of the composites and the interactions of different damage mechanisms. It can be concluded that the tension fracture initiates as interfacial debonding and evolves as a result of interactions between interfacial debonding and matrix plastic deformation, while the compression failure is dominated by matrix plastic damage. And then the effects of interfacial properties on the damage behavior of the composites are assessed. It is found that the interfacial stiffness and fracture energy have relatively smaller influence on the mechanical behavior of composites, while the influence of interfacial strength is significant.
机译:使用计算微力学研究了单向纤维增强聚合物复合材料在垂直于纤维的方向上受到拉伸和压缩的力学行为。通过扩展的Drucker-Prager模型和内聚区模型分别生成了具有随机纤维分布的复合微观结构的代表性体积元素,并在实验中分别观察到两种主要的破坏机理-基体塑性变形和界面脱粘-。模拟中包含了矩阵和界面的渐进破坏过程,并考虑到其对三轴应力状态的敏感性,使用韧性准则来预测矩阵的破坏开始。仿真结果清楚地揭示了复合材料的损伤过程以及不同损伤机理之间的相互作用。可以得出结论,张力断裂始于界面剥离,并由于界面剥离与基体塑性变形之间的相互作用而演化,而压缩破坏则以基体塑性破坏为主。然后评估界面性质对复合材料损伤行为的影响。结果表明,界面刚度和断裂能对复合材料力学性能的影响较小,而界面强度的影响较大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号