...
首页> 外文期刊>Composites >Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties
【24h】

Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties

机译:掺有聚丙烯(PP)/ GnPs复合材料的超大型石墨烯纳米血小板(GnPs),该复合材料是通过熔融混炼及其热,机械和电性能设计的

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, polypropylene (PP)/graphene nanoplatelet (GnPs) nanocomposites with very large sized GnPs (similar to 150 mu m) are prepared by melt extrusion followed by injection molding. A number of characteristics including thermal, mechanical, and electrical properties are analyzed. DSC shows that the introduction of GnPs facilitates the crystallization of polymer matrix due to a role of GnPs that serves as seeds for heterogeneous nucleation, and XRD reveals that GnPs have a minor induction effect of beta crystals. Taking advantage of the large size and high aspect ratio of GnPs, a relatively low percolation threshold of similar to 2.99 vol% is obtained with highly increased in-plane and through-plane electrical conductivity. The fitting of experimental data to the percolation theory indicates that GnPs are three dimensionally dispersed within the polymer matrix. The composites exhibit relatively limited mechanical enhancement due to compromising of GnPs by the shear force introduced during the compounding process. Overall, the usage of large sized GnPs is clearly beneficial for obtaining high electrical conductivity with a less amount of filler, but an enhanced dispersion of fillers with controlled morphology is required to achieve great physical and mechanical properties of the PP/GnPs composites. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在这项研究中,具有很大尺寸的GnP(约150微米)的聚丙烯(PP)/石墨烯纳米片(GnPs)纳米复合材料是通过熔融挤出然后注模制备的。分析了包括热,机械和电特性在内的许多特性。 DSC显示,由于GnP充当异种成核的种子,因此GnP的引入促进了聚合物基质的结晶,XRD显示GnPs对β晶体的诱导作用较小。利用GnPs的大尺寸和高纵横比,可以在平面内和平面内电导率大大提高的情况下获得大约2.99 vol%的相对较低的渗透阈值。实验数据与渗滤理论的拟合表明,GnPs三维分布在聚合物基质中。由于在复合过程中引入的剪切力破坏了GnP,因此复合材料显示出相对有限的机械增强。总的来说,使用大尺寸的GnPs明显有利于用较少的填料获得高电导率,但是需要具有受控形态的增强的填料分散性才能实现PP / GnPs复合材料的出色物理和机械性能。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号