首页> 外文期刊>Composites. B, Engineering >Maintaining electrical conductivity of microcellular MWCNT/TPU composites after deformation
【24h】

Maintaining electrical conductivity of microcellular MWCNT/TPU composites after deformation

机译:保持微孔MWCNT / TPU复合材料的电导率变形

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Along with stretching ability, maintaining good electrical conductivity has become one of the most desirable properties for the next-generation electronics. Although various fabrication methods have been suggested, the greatest obstacle is their feasibility for large-scale production with low cost. In this study, highly stretchable and conductive MWCNT/TPU composite foams were fabricated by an industrially viable technique, melt compounding followed by supercritical fluid treatment and physical foaming. It was demonstrated that the introduction of a microcellular structure can significantly suppress increase in the electrical resistance with stretching. The 3.1 vol% MWCNT/TPU composite exhibited electrical conductivity of 9.5 x 10(-4) S/cm, which reduced to 1.7 x 10(-5) S/cm with 100% stretching. The creation of 26% void fraction increased the conductivity to 1.9 x 10(-3) S/cm and assisted in maintaining a constant level of the electrical conductivity with 100% stretching. This is attributed to the localized deformation around the cells. Since the deformation is localized around the cells, the filler interconnections away from the cells are less deformed, and hence can maintain a high level of electrical conductivity. It was further found that the effect of localized deformation enhances the elongating ability of the MWCNT/TPU composites. This study shows that the generation of a microcellular structure offers a very effective way of fabricating highly stretchable and conductive polymeric materials for future electronics.
机译:随着拉伸能力,保持良好的电导率已成为下一代电子产品的最理想性之一。虽然已经提出了各种制造方法,但最大的障碍是它们具有低成本的大规模生产的可行性。在该研究中,通过工业上可行的技术,熔融配合,然后通过超临界流体处理和物理发泡来制造高度可拉伸和导电MWCNT / TPU复合泡沫。有人证明,引入微孔结构可以显着抑制电阻的增加。 3.1 Vol%MWCNT / TPU复合材料表现出9.5×10(-4)S / cm的电导率,其减少至1.7×10( - 5)S / cm,100%拉伸。产生26%的空隙率馏分增加了导电率至1.9×10(-3)S / cm,并辅助以100%拉伸保持导电率的恒定水平。这归因于细胞周围的局部变形。由于变形围绕细胞局部地,因此远离电池的填充互连较小,因此可以保持高水平的电导率。进一步发现,局部变形的效果可增强MWCNT / TPU复合材料的伸长能力。该研究表明,微孔结构的产生提供了一种非常有效的方法,可以为未来电子制造高度拉伸和导电的聚合物材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号