首页> 外文期刊>Composites >The role of incoherent interface in evading strength-ductility trade-off dilemma of Ti_2AlN/TiAl composite: A combined in-situ TEM and atomistic simulations
【24h】

The role of incoherent interface in evading strength-ductility trade-off dilemma of Ti_2AlN/TiAl composite: A combined in-situ TEM and atomistic simulations

机译:非相干界面在规避Ti_2AlN / TiAl复合材料的强度-延展性折衷困境中的作用:原位TEM和原子模拟的结合

获取原文
获取原文并翻译 | 示例
           

摘要

The strength-ductility trade-off dilemma has inhibited the applications of many structural materials, TiAl alloys in particular. Here we report a new insight into the potential for increasing the ductility of Ti2AlN/TiAl composite without lowering its strength by tuning the interface with a unique incoherent atomic structure. The insitu TEM nanoindentation tests indicate that the Ti2AlN(10 (1) over bar3)//TiAl(111) incoherent interface micro-region possesses high compressive strength and good compressive ductility, because this incoherent interface can simultaneously play the role of softening and hardening in the process of compression due to the interfacedominated nucleation and annihilation of dislocations. The first-principles calculation and MD simulation results reveal that the reason why this incoherent interface displays a distinct compressive deformation behavior is that it has unique atomic structure, bonding character and interface-dislocation interactive mechanisms. By using first-principles calculations, it is found that this incoherent interface possesses a hierarchical atomic structure in the direction normal to the interface, the interface bonding characteristics are multiple and inhomogeneous depending on local atomic configurations, forming both the strong and weak interface interactive regions. The MD simulations indicate that the weakest interface interactive regions, i.e. incoherent regions in the Al2 atomic arrays of Ti2AlN(10 (1) over bar3) plane at the interface, could provide the preferred nucleation source for primary dislocations, incepting the plastic deformation. After the deformation achieves a certain extent, the local disordered interface regions generated by internal stress shearing could act as sinks to annihilating the secondary dislocations propagated from Al1 atomic layer of Ti2AlN(0001) plane, resulting in strain hardening.
机译:强度-延展性折衷的困境阻碍了许多结构材料,尤其是TiAl合金的应用。在这里,我们报告了一个新的见解,即在不通过调整具有独特非相干原子结构的界面而降低其强度的情况下增加Ti2AlN / TiAl复合材料的延展性的潜力。原位TEM纳米压痕测试表明,在bar3)// TiAl(111)上的Ti2AlN(10(1))非相干界面微区具有较高的抗压强度和良好的压缩延展性,因为该非相干界面可以同时起到软化和硬化的作用在压缩过程中,由于界面为主的形核和位错的an灭。第一性原理计算和MD模拟结果表明,这种非相干界面显示出独特的压缩变形行为的原因是它具有独特的原子结构,键合特性和界面-位错相互作用机制。通过第一性原理计算,发现该非相干界面在垂直于界面的方向上具有分层的原子结构,界面键合特性根据局部原子构型而具有多重和不均匀性,从而形成强界面和弱界面交互区域。 。 MD模拟表明,最薄弱的界面相互作用区域,即界面处Ti2AlN(10(1)在bar3)平面上的Al2原子阵列中的非相干区域,可以为主要位错提供首选的成核源,包括塑性变形。变形达到一定程度后,由内部应力剪切产生的局部无序界面区域可以充当汇聚区,以消除从Ti2AlN(0001)平面的Al1原子层传播的二次位错,从而导致应变硬化。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号