首页> 外文期刊>Composites >Generalized multifield variational formulation with interlaminar stress continuity for multilayered anisotropic beams
【24h】

Generalized multifield variational formulation with interlaminar stress continuity for multilayered anisotropic beams

机译:多层各向异性梁具有层间应力连续性的广义多场变分公式

获取原文
获取原文并翻译 | 示例
       

摘要

Classical finite element (FE) beam theories are based on displacement formulation requiring derivatives to obtain the stress components which leads to a large number of FEs and depend on nodal averaging techniques for achieving sufficient accuracy. In this work, a new multifield variational based FE formulation is proposed within the cross-sectional framework of multilayered composite beams for accurate and efficient predictions of sectional stiffness constants and stresses. The interlaminar stress continuity is not assumed a priori and inherently incorporated using the Hellinger-Reissner principle along with a global stress equilibrium constraint, directly computing the stresses at nodal locations. The three-dimensional (3D) stresses and warping deformations are considered as primary variables which inherently incorporate elastic coupling effects related to transverse shear and Poisson deformations. The formulation results in a generalized fully-coupled 6 x 6 sectional stiffness matrix considering elastic couplings. The efficacy of the present analysis is substantiated for thin-walled composite beams with elastic couplings. An excellent correlation is achieved for the elastostatic response as compared with the 3D FE and experimental results. The stresses obtained by the multifield analysis are in accord with detailed 3D FE solutions for various loading conditions while computed at a much reduced computational cost. Improved predictions of interlaminar stresses and stress concentrations are achieved compared to displacement-based approach along with the correct identification of continuity across layer interfaces. The effect of fiber orientation on the interlaminar stresses is also shown to be significant which can be useful for damage analysis of composite beams.
机译:经典的有限元(FE)束理论基于位移公式,需要导数来获得导致大量FE的应力分量,并依赖于节点平均技术来获得足够的精度。在这项工作中,在多层复合梁的截面框架内提出了一种新的基于多场变分的有限元公式,用于精确有效地预测截面刚度常数和应力。层间应力连续性不被假定为先验,而是使用Hellinger-Reissner原理与整体应力平衡约束条件固有地结合在一起,直接计算节点位置的应力。三维(3D)应力和翘曲变形被视为主要变量,它们固有地包含了与横向剪切变形和泊松变形有关的弹性耦合效应。考虑弹性联接,该公式得出了一个广义的完全联接的6 x 6截面刚度矩阵。对于带有弹性联轴器的薄壁组合梁,本分析的有效性得到了证实。与3D FE和实验结果相比,弹性静力响应具有极好的相关性。通过多场分析获得的应力符合针对各种载荷条件的详细3D FE解决方案,同时以大大降低的计算成本进行了计算。与基于位移的方法以及跨层界面连续性的正确识别相比,可以更好地预测层间应力和应力集中。纤维取向对层间应力的影响也显示为显着的,这可用于复合梁的损伤分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号