...
首页> 外文期刊>Composite Structures >The propagation of uncertainty in the geometrically nonlinear responses of smart sandwich porous cylindrical shells reinforced with graphene platelets
【24h】

The propagation of uncertainty in the geometrically nonlinear responses of smart sandwich porous cylindrical shells reinforced with graphene platelets

机译:石墨烯血小板增强智能夹层多孔圆柱壳几何非线性反应的不确定性的传播

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper is concerned with the analysis of uncertainty propagation in the nonlinear dynamic responses of smart sandwich cylindrical shells under rectangular, sine, and exponential loads. The sandwich shells are composed of a functionally graded porous (FGP) core reinforced with nanocomposite graphene platelets (GPLs) and surrounded by two piezoelectric layers. Various sources of uncertainties related to the material properties, the geometry of the reinforcements, and piezoelectric parameters are considered in this study. The uncertainty propagations in the nonlinear dynamic responses of the shells are examined for different variations of GPL dispersions and porosity distributions in the core. For this purpose, three different distributions for porosity and three different dispersions for graphene platelets have been considered in the thickness direction. In order to investigate the uncertainty propagation in the responses of the shells, the interval analysis method which is an appropriate technique for the uncertainty analysis of systems with bounded uncertainties is utilized. The Halpin-Tsai model is used to find the effective properties of the GPL-reinforced materials. The equations of motion are derived based on the higher-order shear deformation theory and Sanders' nonlinear theory. In order to solve the equations of motion and to obtain the dynamic responses of the shells, the Fourier differential quadrature (FDQ) technique is employed. According to the analysis results, the sensitivities of the responses of internal moment, displacement, and internal force have the highest values relative to the uncertainty sources, respectively, whereas the uncertainty percentages for the responses of displacement, internal moment, and internal force respectively have the highest values for the examined loads.
机译:本文涉及矩形,正弦和指数负荷下智能夹心圆柱壳的非线性动力响应中的不确定性传播分析。夹心壳由用纳米复合石墨烯血小板(GPLS)加强的功能渐进的多孔(FGP)芯,并被两个压电层包围。本研究考虑了与材料特性,增强材料的几何形状和压电参数相关的各种不确定性来源。检查壳的非线性动力响应中的不确定性传播,用于核心的GPL分散体和孔隙率分布的不同变化。为此目的,在厚度方向上考虑了用于石墨烯血小板的三种不同的孔隙分布和三种不同的分散体。为了研究壳体的响应中的不确定性传播,利用具有有界不确定性的系统不确定分析的适当技术的间隔分析方法。 Halpin-Tsai模型用于找到GPL加强材料的有效性质。基于高阶剪切变形理论和砂光机的非线性理论来源的运动方程。为了解决运动方程并获得壳的动态响应,采用傅里叶差分正交(FDQ)技术。根据分析结果,内部时刻,位移和内部力的响应的敏感性分别具有相对于不确定性来源的最高值,而分别的响应的不确定性百分比分别具有检查负载的最高值。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号