...
首页> 外文期刊>Composite Structures >Progressive delamination analysis through two-way global-local coupling approach preserving energy dissipation for single-mode and mixed-mode loading
【24h】

Progressive delamination analysis through two-way global-local coupling approach preserving energy dissipation for single-mode and mixed-mode loading

机译:通过双向全局-局部耦合方法进行渐进分层分析,为单模和混合模式负载保留能量耗散

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Together with fiber breakage and matrix cracking, delamination is one of the common damage mechanisms occurring in laminated fiber-reinforced composite structures. Delamination initiates due to the relatively low interlaminar strength of adjacent plies. Delamination onset and propagation can be induced by various combinations of loads and usually leads to a significant reduction of the load-carrying capacity of the structure. For this reason, an efficient and reliable progressive failure analysis capability is required. In this work, the delamination process is simulated by means of a two-way global-local coupling approach. In particular, within this novel global-local approach a method is introduced that ensures the preservation of the dissipated energy when switching between the global and local level. This approach is tested and illustrated under single-mode I and II, and mixed-mode loading in the double cantilever beam (DCB), the end-notched flexure (ENF) and the mixed-mode bending (MMB) benchmark tests, respectively, and the results are compared to available analytical solutions. Finally, the developed method has been applied to a one-stringer stiffened panel and a good agreement was attained compared to the solid model reference solution.
机译:与纤维断裂和基体破裂一起,分层是层压纤维增强复合材料结构中常见的损坏机制之一。由于相邻层的相对较低的层间强度,开始分层。载荷的各种组合会引起分层的开始和传播,通常会导致结构的承载能力显着降低。因此,需要一种有效且可靠的渐进式故障分析功能。在这项工作中,分层过程是通过双向全局-局部耦合方法来模拟的。特别是,在这种新颖的全局-局部方法中,引入了一种方法,该方法可确保在全局和局部级别之间切换时保持耗散的能量。分别在单模I和II以及双悬臂梁(DCB),端部弯曲挠度(ENF)和混合模弯曲(MMB)基准测试的混合模载荷下对此方法进行了测试和说明,并将结果与​​可用的分析解决方案进行比较。最后,将开发的方法应用于单纵梁加筋板,与实体模型参考解决方案相比,取得了很好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号