首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Complete classification of discrete resonant Rossby/drift wave triads on periodic domains
【24h】

Complete classification of discrete resonant Rossby/drift wave triads on periodic domains

机译:在周期域上对离散共振Rossby /漂移波三元组进行完全分类

获取原文
获取原文并翻译 | 示例
           

摘要

We consider the set of Diophantine equations that arise in the context of the partial differential equation called "barotropic vorticity equation" on periodic domains, when nonlinear wave interactions are studied to leading order in the amplitudes. The solutions to this set of Diophantine equations are of interest in atmosphere (Rossby waves) and Tokamak plasmas (drift waves), because they provide the values of the spectral wavevectors that interact resonantly via three-wave interactions. These wavenumbers come in "triads", i.e., groups of three wavevectors. We provide the full solution to the Diophantine equations in the physically sensible limit when the Rossby deformation radius is infinite. The method is completely new, and relies on mapping the unknown variables via rational transformations, first to rational points on elliptic curves and surfaces, and from there to rational points on quadratic forms of "Min-kowski" type (such as the familiar space-time in special relativity). Classical methods invented centuries ago by Fermat, Euler, Lagrange, Minkowski, are used to classify all solutions to our original Diophantine equations, thus providing a computational method to generate numerically all the resonant triads in the system. Computationally speaking, our method has a clear advantage over brute-force numerical search: on a 10,000~2 grid, the brute-force search would take 15 years using optimised C codes on a cluster, whereas our method takes about 40 min using a laptop. Moreover, the method is extended to generate so-called quasi-resonant triads, which are defined by relaxing the resonant condition on the frequencies, allowing for a small mismatch. Quasi-resonant triads' distribution in wavevector space is robust with respect to physical perturbations, unlike resonant triads' distribution. Therefore, the extended method is really valuable in practical terms. We show that the set of quasi-resonant triads form an intricate network of connected triads, forming clusters whose structure depends on the value of the allowed mismatch. It is believed that understanding this network is absolutely relevant to understanding turbulence. We provide some quantitative comparison between the clusters' structure and the onset of fully nonlinear turbulent regime in the barotropic vorticity equation, and we provide perspectives for new research.
机译:当研究非线性波相互作用到振幅的超前阶时,我们考虑在周期微分的偏微分方程(称为“正压涡度方程”)的情况下出现的Diophantine方程组。大气(罗斯比波)和托卡马克等离子体(漂移波)中这组丢丢番图方程的解很有意义,因为它们提供了通过三波相互作用共振相互作用的光谱波矢量的值。这些波数以“三重轴”的形式出现,即三个波矢的组。当Rossby变形半径为无穷大时,我们为Diophantine方程提供了物理上合理极限的完整解。该方法是全新的方法,它依赖于通过有理变换来映射未知变量,首先是绘制椭圆曲线和曲面上的有理点,然后是“ Min-kowski”类型的二次形式(例如熟悉的空间,相对论中的时间)。费马,欧拉,拉格朗日,明可夫斯基发明的几个世纪前发明的经典方法用于对原始Diophantine方程的所有解进行分类,从而提供一种计算方法,以数值方式生成系统中所有共振三重轴。从计算上讲,我们的方法比暴力数字搜索有明显的优势:在10,000〜2的网格上,使用优化的C代码在集群上进行暴力搜索需要15年,而使用笔记本电脑则需要40分钟。此外,该方法已扩展为生成所谓的准谐振三重轴,其通过放宽频率上的谐振条件来定义,从而允许较小的失配。在波矢量空间中,准谐振三重轴的分布相对于物理扰动是鲁棒的,这与谐振三重轴的分布不同。因此,扩展方法在实践上确实很有价值。我们表明,准谐振三重轴的集合形成了一个复杂的连接三重轴的网络,形成了其结构取决于允许的失配值的簇。相信理解该网络与理解湍流绝对相关。我们在正压涡度方程中提供了团簇的结构与完全非线性湍流状态之间的定量比较,并为新的研究提供了前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号