首页> 外文期刊>Combustion Science and Technology >DEVELOPMENT OF A CATALYTIC HYDROGEN MICRO-PROPULSION SYSTEM
【24h】

DEVELOPMENT OF A CATALYTIC HYDROGEN MICRO-PROPULSION SYSTEM

机译:催化氢微推进系统的研制

获取原文
获取原文并翻译 | 示例
       

摘要

In the present study, the feasibility of a catalytic hydrogen micro-propulsion system suitable for providing thrust for micro-satellite attitude control and orbit transfer is demonstrated and examined experimentally and numerically. The effects of major design and operational parameters of fuel/air flow rate, equivalence ratio and nozzle contraction ratio on the thruster performance are investigated. For ease of observation and numerical comparison, a platinum catalytic tube with an inner diameter of 500 μm and length 1 cm is used as the reactor and is tightly inserted into a quartz tube with a convergent nozzle made of quartz of different contraction ratios. For most of the cases tested in experiments, catalytic surface reaction occurs near entrance of the platinum tube due to the high diffusivity and high surface reaction rate of hydrogen. With increasing fuel concentration, the transition point from kinetic-controlled reaction to diffusion-controlled reaction moves further downstream. When the fuel velocity is increased, the hydrogen may not be consumed completely because of insufficient residence time. However, the unburned hydrogen has been heated, by upstream surface reactions, such that gas phase autoignition may occur in the recircu-lation zone just down stream of the platinum tube. The catalytic hydrogen micro-thruster developed in this study can self-sustain and provide a maximum thrust of 7 mN, which is suitable for precision attitude control of micro-and pico-satellites.
机译:在本研究中,通过实验和数值方法论证了适用于为微型卫星姿态控制和轨道转移提供推力的催化氢微推进系统的可行性。研究了燃料/空气流量,当量比和喷嘴收缩比的主要设计和运行参数对推进器性能的影响。为了便于观察和数值比较,将内径为500μm,长为1 cm的铂催化管用作反应器,并将其紧紧插入具有由不同收缩率的石英制成的会聚喷嘴的石英管中。在实验中测试的大多数情况下,由于氢的高扩散率和高表面反应速率,催化表面反应发生在铂管的入口附近。随着燃料浓度的增加,从动力学控制反应到扩散控制反应的转变点进一步向下游移动。当燃料速度增加时,由于停留时间不足,氢可能不会被完全消耗掉。然而,未燃烧的氢已经通过上游表面反应而被加热,使得气相自燃可能发生在铂管下游的再循环区域中。这项研究中开发的催化氢微推力器可以自我维持并提供最大7 mN的推力,适用于微卫星和微卫星的精确姿态控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号