首页> 外文期刊>Combustion Science and Technology >THERMAL STRUCTURE OF LAMINAR METHANE/AIR FLAMES: INFLUENCE OF H_2 ENRICHMENT AND REACTANTS PREHEATING
【24h】

THERMAL STRUCTURE OF LAMINAR METHANE/AIR FLAMES: INFLUENCE OF H_2 ENRICHMENT AND REACTANTS PREHEATING

机译:层状甲烷/火焰的热结构:H_2富集和反应物预热的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The Rayleigh scattering technique has been applied to a V-shaped laminar flame in order to investigate the effect of reactant temperature on the thickness and thermal structure of an H2-enriched laminar methane-air flame. A systematic comparison of experimental and numerical results obtained with the GRI3.0 chemical mechanism is provided. First, the effects of reactant temperature on the pure methane-air flame are presented. A decrease in flame thickness and higher temperature gradients in the flame front are observed, and the maximum temperature gradient is shifted toward lower progress variable values. The preheat zone is substantially modified by the reactant preheating. Globally, the numerical predictions are in good agreement with the experimental results and validate the measurements. In addition, the effects of H_2 enrichment on the thermal methanelair flame thickness are presented for a reactant temperature of 300 K. We show that the main role of H_2 enrichment is to increase the temperature gradient and to shift toward lower values of the thermal progress variable c the location of the maximum temperature gradient. The reactivity of the mixture is strongly increased. At constant equivalence ratio, the burnt gas temperature is not modified by the H_2 enrichment, and the analysis can be done either in c or T space. Finally, the effect of reactant preheating on H_2/CH_4/air flames (40% H_2 dilution in volume) is investigated. The flame thickness is found to be lowered when reactant temperature is increased, but unlike the preheated methane-air flame, the localization of the maximum temperature gradient is not found to be markedly shifted. The reactivity of the mixture is rather controlled by the H radicals produced by H_2 dilution than the reactant preheating.
机译:为了研究反应物温度对富氢层流甲烷空气火焰的厚度和热结构的影响,已将瑞利散射技术应用于V形层流火焰。提供了使用GRI3.0化学机理获得的实验结果和数值结果的系统比较。首先,介绍了反应物温度对纯甲烷-空气火焰的影响。观察到火焰厚度的减小和火焰前沿的较高温度梯度,并且最大温度梯度向较低的进度变量值移动。预热区基本上通过反应物预热而改变。在全球范围内,数值预测与实验结果高度吻合并验证了测量结果。此外,还介绍了在300 K的反应物温度下H_2富集对甲烷甲烷热火焰厚度的影响。我们表明H_2富集的主要作用是增加温度梯度并向较低的热过程变量值转移c最大温度梯度的位置。混合物的反应性大大提高。在当量比恒定的情况下,燃烧气体的温度不会因H_2富集而改变,并且可以在c空间或T空间中进行分析。最后,研究了反应物预热对H_2 / CH_4 /空气火焰(H2稀释体积为40%)的影响。发现当反应物温度升高时,火焰厚度会降低,但与预热的甲烷-空气火焰不同,最大温度梯度的位置没有明显变化。混合物的反应性实际上是由H_2稀释而不是反应物预热而由H自由基控制的。

著录项

  • 来源
    《Combustion Science and Technology》 |2009年第9期|1145-1163|共19页
  • 作者单位

    CORIA - UMR6614, Universite et INSA de Rouen, Campus du Madrillet - BP 8, 76801 Saint Etienne du Rouvray Cedex, France;

    CORIA - UMR6614, Universite et INSA de Rouen,Campus du Madrillet - BP 8, 76801 Saint Etienne du Rouvray Cedex, France;

    Faculty of Aerospace Engineering, University Politehnica of Bucharest, Splaiul Independentei 313, Bucharest, Romania;

    CORIA - UMR6614, Universite et INSA de Rouen, Campus du Madrillet - BP 8, 76801 Saint Etienne du Rouvray Cedex, France;

    CORIA - UMR6614, Universite et INSA de Rouen, Campus du Madrillet - BP 8, 76801 Saint Etienne du Rouvray Cedex, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    hydrogen; laminar flame thickness; preheating; rayleigh scattering; thermal flame structure;

    机译:氢;层流火焰厚度预热瑞利散射热火焰结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号