首页> 外文期刊>Combustion and Flame >Release of Chemical Energy by Combustion in a Supersonic Mixing Layer of Hydrogen and Air
【24h】

Release of Chemical Energy by Combustion in a Supersonic Mixing Layer of Hydrogen and Air

机译:在氢和空气的超音速混合层中通过燃烧释放化学能

获取原文
获取原文并翻译 | 示例
       

摘要

The process involved in chemical energy release by combustion in a supersonic, constant pressure, hydrogen-air laminar mixing layer was studied computationally, with a chemical kinetics model involving nineteen reactions and eight species. To try to find out the physical reason for the different trends of the pressure curves observed in an experimental supersonic combustor at two different initial air stream temperatures. Two initial air stream temperatures corresponding to the two experimental cases are chosen such that the higher temperature yielded a shorter ignition distance, and the lower temperature yielded a longer ignition distance. For both cases the stream wise rate of energy release rises rapidly to a peak after ignition then falls to a post-ignition value which decreases very slowly with distance. A single premixed flame occurs at ignition for both cases, but then develops into a triple flame structure in the high temperature case, and a flame with only two branches in the low temperature case. The flames move from the airside to hydrogen side consuming the oxygen as they go, until the post-ignition phase is reached. There the dominant energy release arises from the formation of a diffusion flame. In the high temperature case a narrow lean premixed flame accompanies this diffusion flame on the airside. The flame structure, but not the energy release, is effected by the initial temperature distribution across the mixing layer, which is found to be influenced by the velocity difference between the faster air stream and the slower hydrogen stream. Increasing the concentration of oxygen atoms in the oncoming air stream was found to cause substantial reduction in the ignition distance, but did not significantly effect the flame structure, or the rate of heat release in the post-ignition phase. Finally, the different trends of pressure curves observed in the experiment can be reconstructed when pressure variation was considered in this model. Thus we can conclude that the difference in the trends of the pressure curves is caused by the difference in the initial air stream temperature.
机译:通过涉及19个反应和8个物种的化学动力学模型,对在超声速,恒压,氢-空气层流混合层中燃烧释放化学能的过程进行了计算研究。为了试图找出在两个不同的初始空气流温度下在实验超声速燃烧器中观察到的压力曲线不同趋势的物理原因。选择对应于两个实验情况的两个初始气流温度,使得较高的温度产生较短的点火距离,而较低的温度产生较长的点火距离。对于这两种情况,沿流的能量释放速率在点火后迅速上升到峰值,然后下降到点火后值,该值随距离而非常缓慢地降低。两种情况在点火时均会出现一个预混火焰,但在高温情况下会发展为三重火焰结构,而在低温情况下会发展成只有两个分支的火焰。火焰从空气侧移到氢侧,并随即消耗氧气,直到到达点火后阶段。在那里,主要的能量释放来自扩散火焰的形成。在高温情况下,窄的稀薄的预混火焰伴随着空气侧的扩散火焰。火焰结构,而不是能量释放,受混合层上的初始温度分布影响,发现该温度分布受较快的气流和较慢的氢气流之间的速度差的影响。已经发现,增加迎面而来的气流中氧原子的浓度会引起点火距离的显着减小,但不会显着影响火焰结构或后点火阶段的放热速率。最后,当在模型中考虑压力变化时,可以重构实验中观察到的压力曲线的不同趋势。因此,我们可以得出结论,压力曲线趋势的差异是由初始气流温度的差异引起的。

著录项

  • 来源
    《Combustion and Flame》 |2002年第3期|p.329-348|共20页
  • 作者

    J. H. TTEN; R. J. STALKER;

  • 作者单位

    Department of Automotive Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an China 710049;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 燃料与燃烧;
  • 关键词

  • 入库时间 2022-08-18 00:14:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号