首页> 外文期刊>Combustion and Flame >Impact of exothermicity on steady and linearized response of a premixed ducted flame
【24h】

Impact of exothermicity on steady and linearized response of a premixed ducted flame

机译:放热对预混导管火焰稳定和线性化响应的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Thermoacoustic instabilities arise in power generation devices such as gas turbines and aero-engines when acoustic modes couple with unsteady heat released due to combustion in a positive feedback loop. This work focuses on the development of a reduced order model for understanding flame dynamics in the case of flameholder-stabilized premixed combustion in a duct—a situation typical in many of these applications. Similar to earlier studies in reduced order modeling of this flow, we employ a G-equation formulation to obtain kinematical representation of the premixed flame and ignore the impact of the unsteady (vortical) fluid dynamics downstream of the flameholder. Unlike those studies, however, we retain the impact of combustion exothermicity in the form of a density jump and associated volume generation at the flame front as well as the steady portion of the baroclinic vortical effect. The reduced order model yields analytical solutions for the flame location and for linear transfer functions between imposed (acoustic) perturbation and combustion heat release. We validate these solutions against numerical simulations and other results in literature. The role of expansion (dilatation) and baroclinic aspects of exothermic effects are discussed in detail. Results show that for realistic density ratios across the flame, the flow is accelerated in the streamwise direction on account of combustion exothermicity and the effects of confinement. This not only alters the flame location but also changes the linearized dynamics of the flame and brings into question conclusions drawn from similar analyses in which exothermicity effects were neglected. This is discussed in the context of modeling and controlling thermoacoustic instabilities.
机译:当声学模式与由于正反馈回路中的燃烧而释放的不稳定热量耦合时,在诸如燃气轮机和航空发动机之类的发电装置中会出现热声不稳定性。这项工作的重点是开发降阶模型,以了解管道中经过火焰保持器稳定的预混燃烧时的火焰动力学-这是许多此类应用中的典型情况。与早期对该流的降序建模的研究相似,我们采用G方程公式来获得预混火焰的运动学表示,而忽略了火焰保持器下游不稳定(涡旋)流体动力学的影响。但是,与那些研究不同的是,我们保留了燃烧放热的影响,其形式为密度跃变和在火焰前缘产生的相关体积以及斜压涡旋效应的稳定部分。降阶模型产生了火焰位置以及施加(声学)扰动和燃烧放热之间的线性传递函数的解析解。我们根据数值模拟和文献中的其他结果验证了这些解决方案。详细讨论了放热作用的扩展(扩张)和斜压方面的作用。结果表明,对于整个火焰的实际密度比而言,由于燃烧放热和约束效应,气流沿气流方向加速。这不仅改变了火焰的位置,而且改变了火焰的线性化动力学,并从类似的分析中得出了结论,在这些分析中,放热效应被忽略了。这是在建模和控制热声不稳定性的上下文中讨论的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号