首页> 外文期刊>Combustion and Flame >Characterization of diffusion flames for synthesis of single-walled carbon nanotubes
【24h】

Characterization of diffusion flames for synthesis of single-walled carbon nanotubes

机译:用于合成单壁碳纳米管的扩散火焰的表征

获取原文
获取原文并翻译 | 示例
           

摘要

Recent studies have shown that Fe/Si/O catalysts on the fuel side of an oxygen-enriched inverse diffusion flame produce micron-length single-walled carbon nanotubes at rapid rates (>100μm/s). Despite the favorable catalyst/flame interaction for nanotube nucleation and growth, the catalyst lifetimes are only a few milliseconds. To increase catalyst lifetime and hence, carbon nanotube length, it is necessary to know how the local environment changes as the catalyst moves through the flame. A 2-D computational fluid dynamics model with detailed chemistry is employed to investigate the nature of the flame environment along various catalyst trajectories. The results indicate that temperature and species concentrations do not change significantly along individual catalyst trajectories, although not all trajectories experience the same environment due to the steep gradients in the radial direction. On the other hand, analysis of catalyst particle composition before and after nanotube growth shows that catalyst oxygen content decreases significantly during nanotube growth. This change in catalyst composition could affect the relative rates of carbon supply versus removal from the catalyst surface, such that carbon encapsulation and thus poisoning of the catalyst is favored after sufficient time. The results of this work indicate that catalyst deactivation, not a changing catalyst environment, is responsible for rapid encapsulation of the catalyst by amorphous carbon and thus, the short catalyst lifetimes observed in oxygen-enriched diffusion flames.
机译:最近的研究表明,富氧逆扩散火焰的燃料侧的Fe / Si / O催化剂能够以快速速率(>100μm/ s)产生微米长度的单壁碳纳米管。尽管纳米管成核和生长具有良好的催化剂/火焰相互作用,但催化剂的寿命只有几毫秒。为了延长催化剂寿命并因此增加碳纳米管的长度,有必要知道随着催化剂在火焰中移动时局部环境如何变化。具有详细化学信息的二维计算流体动力学模型用于研究沿各种催化剂轨迹的火焰环境的性质。结果表明,尽管由于径向上的陡峭梯度,并非所有轨迹都经历相同的环境,但温度和物质浓度在各个催化剂轨迹上并没有显着变化。另一方面,对纳米管生长之前和之后催化剂颗粒组成的分析表明,在纳米管生长期间催化剂氧含量显着降低。催化剂组成的这种变化可影响相对于从催化剂表面去除的碳供应的相对速率,从而在足够的时间后有利于碳的包封并因此使催化剂中毒。这项工作的结果表明,催化剂失活而不是不断变化的催化剂环境,是无定形碳对催化剂的快速包封的原因,因此,在富氧扩散火焰中观察到的催化剂寿命短。

著录项

  • 来源
    《Combustion and Flame》 |2010年第9期|P.1643-1648|共6页
  • 作者单位

    Department of Energy, Environmental, and Chemical Engineering/Center for Materials Innovation, Washington University, St. Louis, MO, USA;

    Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, OH 45440, USA;

    rnDepartment of Energy, Environmental, and Chemical Engineering/Center for Materials Innovation, Washington University, St. Louis, MO, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    single-walled carbon nanotubes; oxygen-enriched combustion; iron/silicon catalyst; catalyst oxidation/reduction;

    机译:单壁碳纳米管;富氧燃烧铁/硅催化剂;催化剂氧化/还原;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号