首页> 外文期刊>Combustion and Flame >Pressure- and temperature-dependent combustion reactions
【24h】

Pressure- and temperature-dependent combustion reactions

机译:与压力和温度有关的燃烧反应

获取原文
获取原文并翻译 | 示例
       

摘要

In combustion systems, many reactions are simple thermal unimolecular isomerizations or dissociations, or the reverse thereof. It is well understood that these reactions typically depend on temperature, pressure and the nature of the bath gas. These kinds of reactions are a subset of the more general behavior that can be described as free radical association reactions that produce highly energized intermediates, which can isomerize or dissociate via multiple chemical pathways. Each reaction rate depends on excitation energy and all of the competing reactions occur in competition with collisional activation and deactivation. These complicated multi-well, multi-channel reaction systems can only be simulated accurately by using master equation techniques. In this paper, master equation calculations are discussed for several examples of reactions important in combustion (and atmospheric chemistry). Current master equation codes are based on statistical RRKM reaction rate constants (including quantum mechanical tunneling) and simplified models for collisional energy transfer. A pragmatic semi-empirical approach is adopted in order to compensate for limited knowledge. The reaction energies needed for RRKM calculations are usually obtained from quantum chemistry calculations, which are often of limited accuracy and may be adjusted empirically. Energy transfer cannot be predicted accurately and must be parameterized by fitting experimental data. For combustion modeling, the master equation results are usually expressed as chemical reactions with rate constants fitted to empirical algebraic equations. However, the results may be expressed more accurately by interpolating from look-up tables. Several current research issues are also mentioned, including the effects of angular momentum conservation, vibrational anharmonicity, slow intramolecular vibrational energy redistribution, and assumptions surrounding the details of collisional energy transfer.
机译:在燃烧系统中,许多反应是简单的热单分子异构化或离解,或相反的反应。众所周知,这些反应通常取决于温度,压力和浴气的性质。这些类型的反应是更一般行为的子集,可以将其描述为自由基缔合反应,该自由基缔合反应产生高能中间体,该中间体可以通过多种化学途径异构化或解离。每个反应速率取决于激发能,所有竞争反应都与碰撞活化和失活竞争。这些复杂的多井,多通道反应系统只能通过使用主方程技术来精确模拟。在本文中,将讨论对于燃烧(和大气化学)很重要的几个反应示例的主方程计算。当前的主方程式代码基于统计的RRKM反应速率常数(包括量子力学隧穿)和用于碰撞能量转移的简化模型。为了弥补有限的知识,采用了实用的半经验方法。 RRKM计算所需的反应能通常是从量子化学计算中获得的,其准确度通常很低,可以根据经验进行调整。能量传递无法准确预测,必须通过拟合实验数据进行参数化。对于燃烧模型,主方程结果通常表示为化学反应,其速率常数适合经验代数方程。但是,通过从查询表进行插值可以更准确地表达结果。还提到了一些当前的研究问题,包括角动量守恒,振动非谐性,分子内振动能量缓慢重新分布的影响,以及围绕碰撞能量转移细节的假设。

著录项

  • 来源
    《Combustion and Flame》 |2011年第4期|p.602-617|共16页
  • 作者单位

    Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-3032, United States;

    rnDepartment of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109-2143, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    master equation; pressure-dependent; RRKM; energy transfer; multiwell;

    机译:主方程压力依赖性RRKM;能量转移;多孔;
  • 入库时间 2022-08-18 00:12:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号