...
首页> 外文期刊>Combustion and Flame >Capabilities and limitations of multi-regime flamelet combustion models
【24h】

Capabilities and limitations of multi-regime flamelet combustion models

机译:多区域小火焰燃烧模型的能力和局限性

获取原文
获取原文并翻译 | 示例

摘要

Flamelet combustion models typically assume that burning occurs in either a fully premixed or a fully non-premixed mode. These assumptions tend to limit the applicability of the models to single-regime combustors. Efforts aimed at reducing this limitation have introduced multi-regime approaches that account for different types of mixing and chemistry interactions. In this study a multi-regime model is applied to two laminar n-heptane flames in an effort to characterize the capabilities and limitations of the approach. Both a 2-D laminar triple flame and a 2-D laminar counter-flow diffusion flame are numerically simulated using the multi-regime model. Data for comparison is generated by additionally simulating the flames using finite rate chemistry, a purely premixed flamelet model, and a purely non-premixed flamelet model. Simulations demonstrate that the multi-regime approach functions as desired, and tends to access flamelets from the appropriate regime under both non-premixed and premixed conditions. Some important differences between the flamelet solutions and finite rate solution are observed, however. These differences are caused by the finite rate solution deviating away from the assumed flamelet manifolds, rather than by inadequate regime predictions. In the analyses of these simulations, an emphasis is placed on understanding the formation of the pollutant species NO. It is shown that even when the local combustion regime is correctly predicted, small deviations from an assumed flamelet manifold can lead to changes in the NO production rate. The simulation results confirm that multi-regime flamelet models are applicable to a wide variety of reacting flows, but the results also help to characterize the limitations of these models.
机译:小火焰燃烧模型通常假设燃烧以完全预混合或完全非预混合模式发生。这些假设倾向于将模型的适用范围限制为单区域燃烧器。旨在减少这种限制的努力已经引入了多区域方法,该方法考虑了不同类型的混合和化学相互作用。在这项研究中,将一种多区域模型应用于两个层流正庚烷火焰,以描述该方法的功能和局限性。使用多区域模型对2-D层流三重火焰和2-D层流逆流扩散火焰进行了数值模拟。通过使用有限速率化学,纯预混合小火焰模型和纯非预混合小火焰模型另外模拟火焰来生成用于比较的数据。模拟表明,多区域方法可以按需要发挥功能,并且在非预混合和预混合条件下,都倾向于从适当的方案中访问小火焰。但是,观察到小火焰溶液和有限速率溶液之间存在一些重要差异。这些差异是由有限速率解决方案偏离假定的小火焰歧管引起的,而不是由不充分的状态预测引起的。在对这些模拟的分析中,重点放在了解污染物NO的形成上。结果表明,即使正确预测了局部燃烧状态,与假定的小火焰歧管的微小偏差也会导致NO产生速率的变化。仿真结果证实了多区域小火焰模型适用于多种反应流,但结果也有助于表征这些模型的局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号