首页> 外文期刊>Combustion and Flame >Highly resolved numerical simulation of combustion in supersonic hydrogen-air coflowing jets
【24h】

Highly resolved numerical simulation of combustion in supersonic hydrogen-air coflowing jets

机译:超音速氢气-空气同流射流燃烧的高分辨率数值模拟

获取原文
获取原文并翻译 | 示例
       

摘要

The present study is focused on the analysis of non-premixed combustion in high-velocity (supersonic) flows. The computations make use of a large eddy simulation (LES) model, which has been recently introduced to address combustion in high Reynolds number turbulent flows featuring moderate Damkohler values. We expect that the corresponding closure is able to account for the specificities encountered in high Mach number turbulent reactive flows featuring chemical reaction time scales with the same order of magnitude as flow time scales. The model takes finite-rate chemistry and micro-mixing effects into account within the framework of the partially stirred reactor (PaSR) concept, it is hereafter denoted by U-PaSR (unsteady partially stirred reactor). (ⅰ) In a first step of the present investigation, the capabilities of the U-PaSR closure hence proposed are evaluated through a detailed comparison performed between numerical results and the data obtained from an experimental study devoted to non-premixed combustion in supersonic co-flowing jets of hydrogen and vitiated air. The simulated test case corresponds to a well-documented experimental database that includes Raman scattering and laser-induced pre-dissocia-tive fluorescence measurements. The comparisons performed between computational results and experimental data establish that the physical processes are well-described by the performed simulation. (ⅱ) In a second step of this study, the flame structure and associated stabilization zone are analysed in the light of numerical simulation results. The post-processing to the computational results indeed confirms the importance of self-ignition processes, as well as the relevance of diagnostic tools recently introduced by Boivin et al.Considering the stabilization zone, it also emphasizes the essential importance of the pressure dynamics associated with the discharge of compressible coflowing jets into the atmosphere - an importance that was not so clearly evidenced from previous numerical simulations conducted on the same experimental benchmark.
机译:本研究的重点是分析高速(超音速)流中的非预混燃烧。该计算利用了大型涡流仿真(LES)模型,该模型最近被引入以解决具有中等Damkohler值的高雷诺数湍流中的燃烧问题。我们期望相应的封闭能够解决在高马赫数湍流反应流中遇到的特殊性,这些反应流具有与反应时间尺度相同数量级的化学反应时间尺度。该模型在部分搅拌反应器(PaSR)概念的框架内考虑了有限速率化学和微混合效应,以下用U-PaSR(不稳定部分搅拌反应器)表示。 (ⅰ)在本研究的第一步中,通过对数值结果和从专门研究超音速共混过程中非预混燃烧的实验研究获得的数据进行详细比较,来评估由此提出的U-PaSR封闭的能力。氢气和通风的空气流。模拟测试用例对应于一个有据可查的实验数据库,该数据库包括拉曼散射和激光诱导的解离前荧光测量。计算结果与实验数据之间进行的比较表明,通过执行的模拟可以很好地描述物理过程。 (ⅱ)在这项研究的第二步中,根据数值模拟结果分析了火焰结构和相关的稳定区。对计算结果的后处理的确确证了自燃过程的重要性以及Boivin等人最近引入的诊断工具的相关性。考虑到稳定区,它也强调了与之相关的压力动力学的至关重要性。将可压缩的并流射流排放到大气中的重要性-以前在相同的实验基准上进行的数值模拟并未清楚地表明这一重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号