首页> 外文期刊>Combustion and Flame >Chemical kinetics modeling of n-nonane oxidation in oxygen/argon using excited-state species time histories
【24h】

Chemical kinetics modeling of n-nonane oxidation in oxygen/argon using excited-state species time histories

机译:氧/氩中正壬烷氧化的化学动力学建模,采用激发态物质时间历史

获取原文
获取原文并翻译 | 示例
       

摘要

Chemical reactions of ground-state species strongly govern the formation of excited-state species, including OH~* and CH~*, which are commonly used to determine ignition delay times of fuels. With well-characterized chemiluminescence rates embedded in chemical kinetics mechanisms, time histories of excited-state species can aid in identifying influential ground-state reactions which are important to processes such as ignition delay time. Placing emphasis on the high-temperature regime, improvements were made to a detailed chemical kinetics mechanism of n-nonane oxidation developed previously by the authors. Using characteristic features of OH~* time histories measured in shock-tube experiments as a metric, detailed model analyses were performed over a broad range of conditions: T> 1100 K, 1.5 < P (atm) < 10.5, Φ = 0.5, 1.0, 2.0. OH~* time history measurements, particularly under fuel-rich conditions (Φ = 2.0), displayed a two-peak behavior, with the first peak occurring within the first 5-10 μs after reflected-shock passage, and the second, wider peak corresponding to main oxidation and ignition. In the initial version of the kinetics mechanism, the two peaks at rich conditions were predicted to merge, blurring the main ignition process prior to the second peak. The work herein presents modifications to the initial chemical kinetics mechanism which led to improved agreement between measurements and model-based predictions, with emphasis on the fuel-rich condition. To this end, the predicted shapes of the OH~* time histories were crucial to matching the two-peak behavior detected in the experiments. A first-order resistance-capacitance (RC) model of the experimental time response of the optical setup was developed and shown to reproduce the measured time dependence and peak behavior that are vital for matching the OH~* behavior near time-zero. The RC model processes the kinetics predictions in a way that allows the kinetics model predictions to directly correspond to the true conditions in the experiment. In moving towards improved agreement in OH~*-profile predictions for all conditions, improvements in the kinetics mechanism were also realized at the two leaner equivalence ratios (Φ = 1.0 and 0.5), both in terms of OH~* profile shape and ignition delay times. Model calculations of oxidation processes indicate that reactions leading to the first OH~* peak originate from fuel homolysis. The resulting (alkyl) radicals lead to the formation of methyl which then, through a series of H-abstraction reactions, leads to the production of the methylidyne radical (CH) that reacts with molecular oxygen to form OH~*. The oxidation processes near time-zero terminate, in part, due to methyl depletion by methylene forming C_2H_4 + H_2. In addition to the insight gained on n-nonane ignition and oxidation chemistry, the present study highlights the utility of correctly interpreted OH~* measurements for inference of kinetic information other than ignition delay times.
机译:基态物质的化学反应强烈控制着激发态物质的形成,包括OH〜*和CH〜*,它们通常用于确定燃料的点火延迟时间。由于化学动力学机制中嵌入了特征明确的化学发光速率,激发态物质的时间历史可以帮助识别对过程如点火延迟时间很重要的有影响的基态反应。着重于高温状态,作者先前开发的正壬烷氧化的详细化学动力学机理得到了改进。使用在冲击管实验中测量的OH〜*时间历史的特征作为度量标准,在以下条件下进行了详细的模型分析:T> 1100 K,1.5 <P(atm)<10.5,Φ= 0.5,1.0 ,2.0。 OH〜*时间历史测量,特别是在燃料丰富的条件下(Φ= 2.0),显示了两个峰的行为,第一个峰出现在反射冲击通过后的前5-10μs之内,第二个峰出现在更宽的峰内对应于主要的氧化和点火。在动力学机制的初始版本中,预测在富油条件下的两个峰会合并,从而模糊了第二个峰之前的主要点火过程。本文的工作提出了对初始化学动力学机制的修改,该修改导致了测量值与基于模型的预测之间的一致性得到改善,并着重于富燃料条件。为此,OH〜*时间历史的预测形状对于匹配实验中检测到的两个峰值行为至关重要。开发了光学装置的实验时间响应的一阶电阻电容(RC)模型,并显示了该模型可重现所测得的时间依赖性和峰值行为,这对于在零时附近匹配OH〜*行为至关重要。 RC模型以允许动力学模型预测直接对应于实验中真实条件的方式处理动力学预测。为了在所有条件下改善OH〜*分布预测的一致性,在OH〜*分布形状和点火延迟方面,在两个更瘦的当量比(Φ= 1.0和0.5)下,动力学机理也得到了改善。次。氧化过程的模型计算表明,导致第一个OH〜*峰的反应源自燃料均质化。生成的(烷基)自由基导致形成甲基,然后通过一系列氢吸收反应,导致生成与分子氧反应形成OH〜*的亚甲基自由基(CH)。接近零时的氧化过程部分是由于亚甲基形成C_2H_4 + H_2而使甲基耗尽而终止的。除了在正壬烷点火和氧化化学方面获得的见识之外,本研究还强调了正确解释的OH〜*测量值对推断除点火延迟时间以外的动力学信息的效用。

著录项

  • 来源
    《Combustion and Flame》 |2014年第5期|1146-1163|共18页
  • 作者单位

    Department of Mechanical Engineering, Texas A&M University,College Station, TX 77843, USA;

    Institut de Combustion Aerothermique Reactivite et Environnement (ICARE), Centre National de la Recherche Scientifique (CNRS), 45071 Orleans Cedex 2, France;

    Department of Mechanical Engineering, Texas A&M University,College Station, TX 77843, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    OH~* time histories; Chemical kinetics modeling; Shock tube; n-Nonane; Ignition delay time;

    机译:OH〜*时间历史记录;化学动力学建模;避震管;正壬烷;点火延迟时间;
  • 入库时间 2022-08-18 00:11:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号