...
首页> 外文期刊>Combustion and Flame >Post discharge evolution of a spark igniter kernel
【24h】

Post discharge evolution of a spark igniter kernel

机译:火花点火器内核的放电后演变

获取原文
获取原文并翻译 | 示例
           

摘要

In many practical combustion devices, short duration, high-energy spark kernels are used to ignite combustible gases in turbulent flows. Here we examine the development of a high energy (~0.25 J) spark kernel created by a short duration (<1 μs) breakdown discharge across two opposed electrodes situated in a uniform air flow. Measurements of electrical energy supplied to the electrodes compare well to thermal energy deposited in the flow with deposition efficiencies exceeding 90%. These spark energies are used as inputs to a numerical model that simplifies the computations by replacing the complex, finite duration, energy deposition process with an instantaneously created, uniform kernel. The evolution of the kernel shape and size predicted by the computational model agrees well with experimental data obtained from high-speed schlieren images, including development of an asymmetry of the kernel between its upstream and downstream regions at later times. The predicted kernel evolution is shown to be essentially independent of the initial size and the composition of the kernel for a fixed deposition energy. The numerical results also reveal the importance of rapid entrainment of ambient air into the central region of the kernel, which quickly reduces the maximum temperatures in the kernel. In addition, the predicted O atom concentrations are well above equilibrium values, especially in the lower temperature regions of the kernel. The higher temperatures and 0 mole fractions found in the leading portion of the kernel are expected to be an important contributor to ignition in non-premixed combustion flows.
机译:在许多实际的燃烧设备中,持续时间短,高能量的火花核用于点燃湍流中的可燃气体。在这里,我们研究了高能量(〜0.25 J)火花核的形成,该火花核是由位于均匀气流中的两个相对电极上的短时间(<1μs)击穿放电产生的。提供给电极的电能的测量结果与流中沉积的热能进行了很好的比较,沉积效率超过90%。这些火花能量被用作数值模型的输入,该数值模型通过用瞬时创建的均匀内核替换复杂的,有限持续时间的能量沉积过程来简化计算。计算模型预测的籽粒形状和大小的演变与从高速schlieren图像获得的实验数据非常吻合,包括后来在其上游和下游区域之间籽粒不对称的发展。对于固定的沉积能量,预测的核演化显示出基本上与初始大小和核的组成无关。数值结果还揭示了迅速将环境空气夹带到玉米粒中心区域的重要性,这会迅速降低玉米粒的最高温度。此外,预测的O原子浓度远高于平衡值,尤其是在籽粒的较低温度区域。预计在籽粒前部中发现较高的温度和0的摩尔分数是非预混燃烧流中引燃的重要因素。

著录项

  • 来源
    《Combustion and Flame》 |2015年第1期|181-190|共10页
  • 作者单位

    Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150, United States;

    Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150, United States;

    Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150, United States;

    Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150, United States;

    Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150, United States;

    Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ignition; Spark kernel; High energy; Simulation; Experiments;

    机译:点火;Spark内核;高能量;模拟;实验;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号