...
首页> 外文期刊>Combustion and Flame >Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames
【24h】

Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames

机译:湍流非预混烟ing火焰中气相物种的非统一路易斯数的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Turbulence statistics from two three-dimensional direct numerical simulations of planar n-heptane/air turbulent jets are compared to assess the effect of the gas-phase species diffusion model on flame dynamics and soot formation. The Reynolds number based on the initial jet width and velocity is around 15, 000, corresponding to a Taylor scale Reynolds number in the range 100 <= Re-lambda <= 150. In one simulation, multicomponent transport based on a mixture-averaged approach is employed, while in the other the gas-phase species Lewis numbers are set equal to unity. The statistics of temperature and major species obtained with the mixture-averaged formulation are very similar to those in the unity Lewis number case. In both cases, the statistics of temperature are captured with remarkable accuracy by a laminar flamelet model with unity Lewis numbers. On the contrary, a flamelet with a mixture-averaged diffusion model, which corresponds to the model used in the multi-component diffusion three-dimensional DNS, produces significant differences with respect to the DNS results. The total mass of soot precursors decreases by 20-30% with the unity Lewis number approximation, and their distribution is more homogeneous in space and time. Due to the non-linearity of the soot growth rate with respect to the precursors' concentration, the soot mass yield decreases by a factor of two. Being strongly affected by coagulation, soot number density is not altered significantly if the unity Lewis number model is used rather than the mixture-averaged diffusion. The dominant role of turbulent transport over differential diffusion effects is expected to become more pronounced for higher Reynolds numbers. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:比较了来自平面正庚烷/空气湍流射流的两个三维直接数值模拟的湍流统计数据,以评估气相物种扩散模型对火焰动力学和烟尘形成的影响。基于初始射流宽度和速度的雷诺数约为15,000,对应于泰勒级雷诺数在100 <= Re-lambda <= 150范围内。在一个模拟中,多组分传输基于混合平均方法使用气相色谱法,而在其他气相物种中,路易斯数设定为等于1。用混合物平均配方获得的温度和主要物质的统计数据与统一路易斯数情况下的统计数据非常相似。在这两种情况下,温度统计都是由具有统一Lewis数的层状小火焰模型捕获的,具有非凡的准确性。相反,与混合物平均扩散模型相对应的小火焰,与在多组分扩散三维DNS中使用的模型相对应,其DNS结果存在明显差异。烟灰前体的总质量随着统一的路易斯数而减少了20-30%,并且它们的分布在空间和时间上更加均匀。由于烟ot生长速率相对于前驱物浓度呈非线性关系,烟mass质量产率降低了两倍。受凝结的强烈影响,如果使用统一的Lewis数模型而不是混合物平均扩散,则烟灰数密度不会显着改变。对于更高的雷诺数,预计湍流在微分扩散效应上的主导作用将变得更加明显。 (C)2016年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号