...
首页> 外文期刊>Combustion and Flame >Growth of polycyclic aromatic hydrocarbons (PAHs) by methyl radicals: Pyrene formation from phenanthrene
【24h】

Growth of polycyclic aromatic hydrocarbons (PAHs) by methyl radicals: Pyrene formation from phenanthrene

机译:多环芳烃(PAHs)的甲基生长:由菲形成P

获取原文
获取原文并翻译 | 示例
           

摘要

The formation of polycyclic aromatic hydrocarbons (PAHs) in high temperature environments is an ongoing area of research due to the mismatch between the experimental and simulated concentration profiles of PAHs in several flames. In this work, the role of methyl radicals in the growth of PAHs is identified by developing a detailed reaction mechanism for the conversion of phenanthrene to pyrene by methyl radicals. The reaction energetics are obtained through quantum calculations using B3LYP and M06-2X functionals along with 6-311++G(d,p) basis set, and are used to compare the competing channels for pyrene formation. The transition state theory is used to determine the reaction kinetics. Through kinetic simulations, the most preferred path for pyrene formation from phenanthrene is determined. To quantify the contribution of the newly found reactions in PAH growth in the presence of other competing PAH mechanisms, the reactions are merged with a recently developed and well-validated mechanism for C-1-C-4 hydrocarbons with detailed PAH chemistry. Three premixed laminar aliphatic flames were simulated with the updated mechanism. It was observed that the new reactions did not appreciably influence the computed profiles of phenanthrene and pyrene. Through the rate-of-production analysis, it was found that the phenanthrene radicals created through H-abstraction were more susceptible to attack by C2H2 than by methyl radicals. The indirect role of methyl radicals in PAH formation and growth is shown. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:由于在多个火焰中PAHs的实验浓度分布和模拟浓度分布之间不匹配,因此在高温环境中形成多环芳烃(PAHs)仍是一个研究的领域。在这项工作中,通过开发一种详细的反应机理来确定甲基在PAHs生长中的作用,该反应机理是通过甲基将菲转化为pyr。通过使用B3LYP和M06-2X官能团以及6-311 ++ G(d,p)基集的量子计算获得反应能,并将其用于比较pyr形成的竞争通道。过渡态理论用于确定反应动力学。通过动力学模拟,确定了由菲形成pyr的最优选途径。为了在存在其他竞争性PAH机理的情况下量化新发现的反应对PAH生长的贡献,将这些反应与最近开发并经过充分验证的C-1-C-4碳氢化合物机理进行了详细的PAH化学反应。使用更新的机制模拟了三个预混合的层状脂族火焰。观察到,新反应没有显着影响菲和pyr的计算曲线。通过生产率分析,发现通过H提取产生的菲自由基比甲基自由基更容易受到C2H2的攻击。显示了甲基自由基在PAH形成和生长中的间接作用。 (C)2017燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2017年第11期|129-141|共13页
  • 作者单位

    Petr Inst, Dept Chem Engn, Abu Dhabi, U Arab Emirates;

    Petr Inst, Dept Chem Engn, Abu Dhabi, U Arab Emirates;

    Petr Inst, Dept Chem Engn, Abu Dhabi, U Arab Emirates;

    Petr Inst, Dept Chem Engn, Abu Dhabi, U Arab Emirates|Arya Vidyapeeth Coll, Dept Chem, Gauhati, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PAH; Reaction mechanism; DFT; Methyl; Transition state theory;

    机译:PAH反应机理DFT甲基过渡态理论;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号