...
首页> 外文期刊>Combustion and Flame >Flame Describing Function analysis of spinning and standing modes in an annular combustor and comparison with experiments
【24h】

Flame Describing Function analysis of spinning and standing modes in an annular combustor and comparison with experiments

机译:环形燃烧室自旋和站立模式的火焰描述功能​​分析及与实验的比较

获取原文
获取原文并翻译 | 示例
           

摘要

This article reports a numerical analysis of combustion instabilities coupled by a spinning mode or a standing mode in an annular combustor. The method combines an iterative algorithm involving a Helmholtz solver with the Flame Describing Function (FDF) framework. This is applied to azimuthal acoustic coupling with combustion dynamics and is used to perform a weakly nonlinear stability analysis yielding the system response trajectory in the frequency-growth rate plane until a limit cycle condition is reached. Two scenarios for mode type selection are tentatively proposed. The first is based on an analysis of the frequency growth rate trajectories of the system for different initial solutions. The second considers the stability of the solutions at limit cycle. It is concluded that a criterion combining the stability analysis at the limit cycle with the trajectory analysis might best define the mode type at the limit cycle. Simulations are compared with experiments carried out on the MICCA test facility equipped with 16 matrix burners. Each burner response is represented by means of a global FDF and it is considered that the spacing between burners is such that coupling with the mode takes place without mutual interactions between adjacent burning regions. Depending on the nature of the mode being considered, two hypotheses are made for the FDFs of the burners. When instabilities are coupled by a spinning mode, each burner features the same velocity fluctuation level implying that the complex FDF values are the same for all burners. In case of a standing mode, the sixteen burners feature different velocity fluctuation amplitudes depending on their relative position with respect to the pressure nodal line. Simulations retrieve the spinning or standing nature of the self-sustained mode that were identified in the experiments both in the plenum and in the combustion chamber. The frequency and amplitude of velocity fluctuations predicted at limit cycle are used to reconstruct time resolved pressure fluctuations in the plenum and chamber and heat release rate fluctuations at two locations. For the pressure fluctuations, the analysis provides a suitable estimate of the limit cycle oscillation and suitably retrieves experimental data recorded in the MICCA setup and in particular reflects the difference in amplitude levels observed in these two cavities. Differences in measured and predicted amplitudes appear for the heat release rate fluctuations. Their amplitude is found to be directly linked to the rapid change in the FDF gain as the velocity fluctuation level reaches large amplitudes corresponding to the limit cycle, underlying the need of FDF information at high modulation amplitudes. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:本文报告了在环形燃烧室中通过旋转模式或直立模式耦合的燃烧不稳定性的数值分析。该方法将涉及亥姆霍兹求解器的迭代算法与火焰描述函数(FDF)框架相结合。将其应用于具有燃烧动力学的方位角声学耦合,并用于执行弱非线性稳定性分析,从而在频率增长速率平面上产生系统响应轨迹,直到达到极限循环条件为止。初步提出了两种模式选择的方案。第一种是基于对不同初始解的系统频率增长率轨迹的分析。第二个考虑极限周期下解的稳定性。结论是,将极限周期的稳定性分析与轨迹分析相结合的准则可能会最好地定义极限周期的模式类型。将模拟与在配有16个矩阵燃烧器的MICCA测试设备上进行的实验进行比较。每个燃烧器响应均通过全局FDF表示,并且可以认为,燃烧器之间的间距应使与模式耦合发生,而相邻燃烧区域之间不会相互影响。根据所考虑的模式的性质,对燃烧器的FDF进行了两个假设。当不稳定性通过旋转模式耦合时,每个燃烧器的速度波动水平相同,这意味着所有燃烧器的复杂FDF值都相同。在站立模式的情况下,十六个燃烧器的特征在于不同的速度波动幅度,这取决于它们相对于压力节点线的相对位置。模拟可获取在充气室和燃烧室中在实验中确定的自持模式的自旋或站立特性。在极限循环中预测的速度波动的频率和幅度用于重建压力室和腔室中时间分辨的压力波动以及两个位置的放热速率波动。对于压力波动,该分析提供了极限循环振荡的适当估计,并适当地获取了在MICCA设置中记录的实验数据,特别是反映了在这两个腔中观察到的振幅水平的差异。对于放热速率波动,出现了测量幅度和预测幅度的差异。发现它们的幅度直接与FDF增益的快速变化有关,因为速度波动水平达到了对应于极限周期的大幅度,这意味着在高调制幅度下需要FDF信息。 (C)2017燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号