首页> 外文期刊>Combustion and Flame >Investigation of mixing model performance in transported PDF calculations of turbulent lean premixed jet flames through Lagrangian statistics and sensitivity analysis
【24h】

Investigation of mixing model performance in transported PDF calculations of turbulent lean premixed jet flames through Lagrangian statistics and sensitivity analysis

机译:通过拉格朗日统计和灵敏度分析研究湍流稀薄预混射流火焰的PDF计算中的混合模型性能

获取原文
获取原文并翻译 | 示例
           

摘要

The piloted premixed jet burner (PPJB) methane-air flame series have been developed to study turbulence-chemistry interactions in lean and highly turbulent premixed flames. The two flames with the largest jet velocities, denoted as PM1-150 and PM1-200, remain challenging for combustion models up to the present. In this work, the flames with the lowest and highest jet velocities, PM1-50 and PM-1200 respectively, are simulated using a hybrid RANS-PDF method to examine the composition evolution and the mixing model performance through Lagrangian particle tracking, and to reveal the controlling physio-chemical processes through particle-level sensitivity analysis. The mixing-reaction budget analysis reveals that for the PM1-50 flame, the implied combustion modes by IEM and EMST mixing models are different: the simulation with EMST is consistent with a flame propagation process, whereas the one with IEM is consistent with an autoignition process. In this regard, for the PM1-50 in the flamelet regime, EMST predicts the correct combustion process whereas IEM does not, despite the fact that the radial profiles of species concentration predicted by these two models are almost identical and are both in good agreement with the experimentally measured values. For the PM1-200 flame closest to global blow-off, EMST and IEM yield similar characteristics: both predict a balance between mixing and reaction in the reaction zone, and both are consistent with flame propagation processes. Due to strong turbulent mixing, the mixing in the preheat zone is greatly enhanced. The change of combustion modes predicted by IEM, i.e. from an autoignition process in PM1-50 to a flame propagation process in PM1-200, is further explored by examining some representative particle trajectories in progress variable space. The PDFs and the mixing-reaction budgets of the progress variable predicted by IEM and EMST demonstrate that the localness of mixing in composition space is essential for a flame in the flamelet regime (PM1-50), while it is less important for a flame in the broken reaction zone regime (PM1-200). The particle-level sensitivity approach has been augmented to further investigate the sensitivities of combustion process to mixing and reaction with an attenuation factor R for the overall reaction rate being introduced to quantify the sensitivities to chemical reaction. It is observed that the sensitivities in PM1-50 and PM1-200 are very different. For PM1-50, the sensitivities of the progress variable to the mixing model constant C-phi and to the attenuation factor R are both positive, indicating that the reaction progress can be promoted by enhancing either mixing or reaction. In contrast, for PM1-200, the progress variable at the upstream location shows negative sensitivities to C-phi, which indicates that enhancing mixing suppresses combustion progress due to the fact that the flame is already near the blow-off limit. At downstream locations, the sensitivities of progress variable to reaction is significantly larger than its sensitivity to mixing, indicating that the controlling process during the reignition stage is chemical reaction. These sensitivities are insightful in explaining the observed trends in previous parametric studies of C-phi, for high speed PPJB flames, in which it is found that increasing C-phi alleviates the overpredition of reaction progress at the upstream location but does not help improve the prediction at the downstream location where the controlling process is chemical reaction.
机译:已开发了先导式预混合喷射燃烧器(PPJB)甲烷-空气火焰系列,以研究稀薄和高度湍流的预混合火焰中的湍流-化学相互作用。截止到目前的燃烧模型,喷射速度最大的两个火焰分别表示为PM1-150和PM1-200。在这项工作中,使用混合RANS-PDF方法模拟了具有最低和最高射流速度的火焰PM1-50和PM-1200,以通过拉格朗日粒子跟踪检查成分演变和混合模型性能,并揭示通过粒子级敏感性分析控制理化过程。混合反应预算分析表明,对于PM1-50火焰,IEM和EMST混合模型的隐含燃烧模式是不同的:使用EMST的模拟与火焰传播过程一致,而使用IEM的模拟与自燃一致。处理。在这方面,对于小火焰状态的PM1-50,EMST预测正确的燃烧过程,而IEM不能预测正确的燃烧过程,尽管事实是这两个模型预测的物种浓度的径向分布几乎相同,并且都与实验测量值。对于最接近整体吹扫的PM1-200火焰,EMST和IEM具有相似的特征:两者都预测反应区内混合与反应之间的平衡,并且都与火焰传播过程一致。由于强烈的湍流混合,大大增强了预热区的混合。通过检查过程变量空间中的一些代表性粒子轨迹,进一步探索了由IEM预测的燃烧模式的变化,即从PM1-50的自燃过程到PM1-200的火焰传播过程。 PDF和IEM和EMST预测的进度变量的混合反应预算表明,在小火焰区域(PM1-50),火焰在成分空间中的混合局部对于火焰是必不可少的,而对于在火焰中的火焰则不重要。破碎的反应区状态(PM1-200)。引入了颗粒级敏感性方法,以进一步研究燃烧过程对混合和反应的敏感性,并采用衰减因子R来引入总反应速率,以量化对化学反应的敏感性。可以看出,PM1-50和PM1-200中的灵敏度非常不同。对于PM1-50,进度变量对混合模型常数C-phi和衰减因子R的敏感度均为正,表明可以通过增强混合或反应来促进反应进度。相反,对于PM1-200,上游位置的进度变量显示出对C-phi的负敏感性,这表明由于火焰已经接近吹扫极限这一事实,增强混合抑制了燃烧进度。在下游位置,进展变量对反应的敏感性明显大于其对混合的敏感性,这表明在复燃阶段的控制过程是化学反应。这些敏感性对于解释先前的C-phi对高速PPJB火焰的参数研究中观察到的趋势很有洞察力,其中发现C-phi的增加减轻了上游位置反应进度的过分提法,但无助于改善控制过程为化学反应的下游位置进行预测。

著录项

  • 来源
    《Combustion and Flame》 |2017年第7期|136-148|共13页
  • 作者单位

    Tsinghua Univ, Ctr Combust Energy, Beijing 100084, Peoples R China;

    Tsinghua Univ, Ctr Combust Energy, Beijing 100084, Peoples R China|Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China;

    Tsinghua Univ, Ctr Combust Energy, Beijing 100084, Peoples R China|Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China;

    Convergent Sci Inc, Madison, WI 53719 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Turbulent flames; Mixing models; Particle-level sensitivity; PDF simulation;

    机译:湍流火焰混合模型颗粒级灵敏度PDF模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号