首页> 外文期刊>Combustion and Flame >The large-activation-energy analysis of extinction of counterflow diffusion flames with non-unity Lewis numbers of the fuel
【24h】

The large-activation-energy analysis of extinction of counterflow diffusion flames with non-unity Lewis numbers of the fuel

机译:具有燃料非统一路易斯数的逆流扩散火焰熄灭的大活化能分析

获取原文
获取原文并翻译 | 示例
       

摘要

Large-activation-energy asymptotic techniques are used to describe the effects of non-unity Lewis numbers of the fuel on strain-induced extinction of axisymmetric counterflow diffusion flames. The present work extends and clarifies previous investigations by accounting also for variable density and variable transport properties of the gas. In our asymptotic analysis the flame structure near extinction is, at leading order, given by the Burke-Schumann limit of infinitely fast reaction; i.e. two outer regions of equilibrium flow, with the fuel and the oxygen separated by an infinitesimally thin reaction layer where they arrive by diffusion in stoichiometric proportions. The leading-order description provides the basic flow structure, including the flame-sheet location, the fuel-consumption rate, the temperature gradients on both sides of the flame, and the peak value of the temperature, which plays a dominant role in flame extinction and differs significantly from the adiabatic-flame value for non-unity Lewis numbers. In the near-extinction regime small departures, due to finite rates, from the fast-reaction limit are enough to dominate the structure of the reaction layer, and must be taken into account in this thin layer and in the outer chemically frozen regions, where the corrections are associated with the reactants leaking, with small mass fractions, through the flame. The main effect of the differential diffusion in the near extinction regime is due to the strong modification of the reaction rates resulting from the changes in the Burke-Schumann peak temperature, with only moderate corrections due to leakage of the reactants through the flame. For large values of the overall stoichiometric ratio S of the diffusion flame, defined as the mass of the air stream needed to burn to completion the unit mass of the fuel stream, the extinction conditions occur in a premixed-flame regime, in which the reaction layer is displaced towards the fuel side with respect to the Burke-Schumann flame sheet position and a fraction of the arriving fuel mass flux leaks through the reaction layer, while the mass fraction of the leaking oxygen decreases to negligibly small values. The asymptotic predictions are tested by comparison with numerical integrations of extinction curves based on continuation methods. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:大活化能渐近技术用于描述燃料的非统一路易斯数对轴对称逆流扩散火焰的应变诱导消光的影响。本工作通过考虑气体的可变密度和可变传输特性,扩展并阐明了先前的研究。在我们的渐近分析中,接近灭绝的火焰结构以无限快反应的Burke-Schumann极限给出,这是最主要的顺序。也就是两个平衡流动的外部区域,燃料和氧气之间通过无限薄的反应层隔开,它们通过化学计量比例的扩散到达。前导描述提供了基本的流动结构,包括火焰片的位置,燃料消耗率,火焰两边的温度梯度以及温度的峰值,这在熄灭火焰中起主要作用并且与非统一刘易斯数的绝热值明显不同。在近乎灭绝的环境中,由于有限的速率,与快速反应极限的微小偏离足以支配反应层的结构,因此必须在该薄层和外部化学冻结区域中加以考虑。校正与反应物以小质量分数通过火焰泄漏有关。在近乎灭绝状态下,差异扩散的主要作用是由于Burke-Schumann峰值温度的变化引起的反应速率的强烈变化,而由于反应物通过火焰泄漏而仅进行了适度的校正。对于扩散火焰的总化学计量比S的较大值(定义为燃烧以完成燃料流的单位质量所需的空气流质量),消光条件发生在预混合火焰状态下,在该状态下,反应相对于Burke-Schumann火焰片的位置,碳氢化合物层向燃料侧移动,到达的燃料质量通量的一部分通过反应层泄漏,而泄漏的氧气的质量分数降低到可以忽略的较小值。通过与基于延续方法的消光曲线的数值积分进行比较,来检验渐近预测。 (C)2016年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号