首页> 外文期刊>Combustion and Flame >Modelling of the transition of a turbulent shock-flame complex to detonation using the linear eddy model
【24h】

Modelling of the transition of a turbulent shock-flame complex to detonation using the linear eddy model

机译:使用线性涡模型对湍流冲击火焰复合体向爆炸的过渡进行建模

获取原文
获取原文并翻译 | 示例
       

摘要

In the current study, the influence of turbulent mixing and local reaction rates on the transition to detonation of a turbulent shock-flame complex was investigated using a state-of-the-art large eddy simulation (LES) strategy. Specifically, detonation attenuation by a porous medium, and the subsequent re-initiation for methane-oxygen, a moderately unstable mixture, was considered. The purpose of the investigation was to validate the numerical strategy with previous experimental observations, and to determine what specific roles turbulent mixing and shock compression have on flame acceleration during the final stages of deflagration to detonation transition (DDT). The modelling procedure adopted was a grid-within-a-grid approach: The compressible linear eddy model for large eddy simulation (CLEM-LES). It was found that average turbulent velocity fluctuations greater than the laminar flame speed by an order of magnitude were required in order to maintain wave velocities above the Chapman-Jouguet (CJ)-deflagration velocity threshold, a precursor requirement for detonation re-initiation to occur. It was also found that sufficient turbulent burning on the flame surface was required in order to drive pressure waves to sufficiently strengthen the leading shock wave, locally, in order to trigger auto-ignition hot spots in the wave front. These local explosion events, which were found to burn out through turbulent surface reactions, drive transverse pressure waves outward. Upon subsequent shock reflections or interactions of the transverse waves, new local explosion events occurred, which further strengthened the adjacent leading shock wave above the CJ-detonation speed. Eventually, through this process, the wave sustained the CJ-detonation speed, on average, through the cyclic mechanism of local explosion events followed by turbulent surface reactions. Finally, combustion of the flame acceleration process was found to lie within the thin-reaction zones regime. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:在当前的研究中,使用最新的大型涡流模拟(LES)策略研究了湍流混合和局部反应速率对湍流冲击火焰复合体向爆轰过渡的影响。具体地,考虑了多孔介质的爆震衰减,以及随后的甲烷-氧气(中等不稳定混合物)的重新引发。研究的目的是用先前的实验观察结果来验证数值策略,并确定在爆燃-爆轰过渡(DDT)的最后阶段,湍流混合和冲击压缩对火焰加速有何特定作用。所采用的建模程序是网格内网格方法:用于大涡模拟的可压缩线性涡模型(CLEM-LES)。已经发现,需要平均湍流速度波动大于层流火焰速度一个数量级,才能将波速保持在Chapman-Jouguet(CJ)爆燃速度阈值以上,这是发生爆轰重新开始的先决条件。还发现需要在火焰表面上进行充分的湍流燃烧,以驱动压力波以局部地充分增强前导冲击波,从而触发波前的自燃热点。这些局部爆炸事件被发现通过湍流的表面反应而燃烧,从而将横向压力波向外推动。在随后的冲击反射或横向波的相互作用下,发生了新的局部爆炸事件,这进一步增强了在CJ爆轰速度以上的相邻前导冲击波。最终,通过该过程,波平均通过局部爆炸事件的循环机制以及随后的湍流表面反应,维持了CJ爆轰速度。最后,发现火焰加速过程的燃烧位于薄反应区范围内。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号