首页> 外文期刊>Combustion and Flame >Flame-resolved transient simulation with swirler-induced turbulence applied to lean blowoff premixed flame experiment
【24h】

Flame-resolved transient simulation with swirler-induced turbulence applied to lean blowoff premixed flame experiment

机译:具有旋流诱导的湍流的火焰分辨的瞬态模拟,施加到瘦吹气预混火焰实验

获取原文
获取原文并翻译 | 示例
       

摘要

This article presents a flame-resolved transient simulation of the Cavaliere et al premixed flame experiment [1] to investigate the mechanisms that lead towards lean blowoff/blowout (LBO). The computational domain includes the swirler to capture the unsteady turbulent 3D velocity field generated. The computational grid design intent is to minimize the use of the subgrid scale models in order to resolve most of the turbulence scales in both the fresh and the burnt gases as well as the flame front thickness throughout the computational domain, resulting in a structured mesh with a grid count of 236 million cells. A transient sequence corresponding to a step change of equivalence ratio (1) from 0.7 to 0.55 is modeled. The combustion chemistry mechanism consists of a single step overall reaction. The computational results are compared to experimental data and an overall good agreement is observed, except for the latest times of the LBO sequence. The validated computational results are analyzed with dynamic mode decomposition (DMD) technique, flow field visualizations, signals time-traces and space-time diagrams of a posteriori reconstructed OH fields to investigate the underlying mechanism leading to lean blowoff for this flame. In addition, an evaluation of known state of the art LBO mechanisms reported in literature is carried out. It includes the precessing vortex core, flame sheet holes, inner recirculation zone (IRZ) dynamics, and heat losses. The analysis shows that a key phenomenon leading to lean blowout for the present configuration is associated with the convective motion of cooler combustion products into the IRZ as the equivalence ratio is decreased.(c) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:本文介绍了CAVALIERE等预混火焰实验的火焰解决的瞬态仿真[1]以研究导致瘦吹气/井喷/井喷(LBO)的机制。计算域包括旋转捕获产生的不稳定湍流3D速度场的旋流器。计算网格设计意图是最小化SubLIG刻度模型的使用,以便在整个计算领域的燃烧气体中的大部分湍流尺度以及在整个计算领域的火焰前厚度中解决,导致结构化网网格数为2.36亿细胞。建模对应于等效比(1)的步长变化的瞬态序列,从0.7到0.55进行建模。燃烧化学机制包括单步总反应。将计算结果与实验数据进行比较,除了LBO序列的最新时间外,观察到整体良好的协议。通过动态模式分解(DMD)技术,流场可视化,信号时间迹线和后验中的时间迹线和空时图分析了验证的计算结果,以研究导致该火焰的百分比吹气的底层机制。此外,进行了文献中报道的公布LBO机制的已知状态的评估。它包括精细涡旋芯,火焰板孔,内再循环区(IRZ)动力学和热损失。分析表明,由于当量比减小,导致本配置的倾向于井喷的关键现象与将冷却器燃烧产物的对流运动相关联。(c)2020该燃烧研究所。由elsevier Inc.保留所有权利发布。

著录项

  • 来源
    《Combustion and Flame》 |2021年第4期|14-30|共17页
  • 作者

    Palies Paul; Acharya Ragini;

  • 作者单位

    CFDRC 701 McMillian Way Huntsville AL 35806 USA;

    UTSI 411 BH Goethert Pkwy Tullahoma TN 37388 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Swirler; Turbulence; LBO; Transient; Premixed; Onset;

    机译:旋流器;湍流;LBO;瞬态;预混合;发病;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号