首页> 外文期刊>Combustion and Flame >Thermodynamics and kinetics of solution combustion synthesis: Ni(NO_3)_2 + fuels systems
【24h】

Thermodynamics and kinetics of solution combustion synthesis: Ni(NO_3)_2 + fuels systems

机译:溶液燃烧合成的热力学和动力学:Ni(NO_3)_2 +燃料系统

获取原文
获取原文并翻译 | 示例
       

摘要

Solution combustion synthesis (SCS) utilizes exothermic self-propagating reactions to prepare nanoscale materials that can be used widely in energy, electronics, and biomedical technologies and other applications. SCS is a specific variety of a more general combustion synthesis (CS) method. Investigations of the thermodynamics, kinetics, and the mechanisms of SCS reactions, are not as well studied as the other CS processes. This work reports on a systematic study of the thermodynamics and kinetics of SCS reactions involving Ni(NO3)(2), an oxidizer, and either glycine (C2H5NO2) or hexamethylenetetramine (HMT, C6H12N4) as fuels. A thermodynamic modeling approach, based on the Gibbs free energy minimization principle, is applied to the simultaneous calculations of the adiabatic temperatures and compositions of the equilibrium products. Our calculations reveal the influence of fuel-to-oxidizer ratio, amount of water, and the oxygen in air on the combustion temperature under adiabatic conditions and the composition of the resulting products. We have, in turn, measured the combustion temperature and phase composition of products and compared them with the calculations. Variations of drying times for the solutions yield precursor gels with varying water contents. This approach enables the manipulation of combustion parameters and confirms the use of calculated activation energies for reactions using the Merzhanov-Khaikin method. The results show that SCS reactions in fuel-lean solutions producing NiO have higher activation energy in contrast to reactions with fuel-rich solutions that form Ni. Reduction of activation energies due to the increase in the fuel-to-oxidizer ratio could be related to the observed change of the rate-limiting stages of the endothermic decomposition of the individual reactants to the exothermic decomposition of coordinate compounds formed between the reactants. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:溶液燃烧合成(SCS)利用放热的自展反反应制备可广泛用于能量,电子和生物医学技术和其他应用的纳米级材料。 SC是一种更常规燃烧合成(CS)方法的特定种类。热力学,动力学和SCS反应机制的研究并不像其他CS过程那样研究。这项工作有关涉及Ni(NO 3)(2),氧化剂和甘氨酸(C 2 H 5 NO 2)或六亚甲基丁二胺(HMT,C6H12N4)作为燃料的SCS反应的系统研究。一种基于GIBBS自由能量最小化原理的热力学建模方法应用于同时计算平衡产物的绝热温度和组成。我们的计算揭示了燃料 - 氧化剂比,水量的影响,以及在绝热条件下的燃烧温度下的空气中的氧气和所得产物的组成。反过来,我们已经测量了产品的燃烧温度和相位组成,并将其与计算进行了比较。溶液干燥时间的变化产生具有不同水含量的前体凝胶。这种方法能够操纵燃烧参数并确认使用Merzhanov-Khaikin方法的反应的计算使用。结果表明,燃料瘦溶液中的SCS反应产生NIO的活化能量与形成Ni的富含燃料溶液的反应相反。由于燃料到氧化剂比的增加,减少活化能量可能与观察到的速率分解的速率限制阶段的变化与反应物之间形成的坐标化合物的放热分解的速率限制阶段的变化有关。 (c)2020燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号