...
首页> 外文期刊>Combustion and Flame >Exploration on laminar flame propagation of ammonia and syngas mixtures up to 10 atm
【24h】

Exploration on laminar flame propagation of ammonia and syngas mixtures up to 10 atm

机译:氨和合成气混合物的层流火焰繁殖探索达10个atm

获取原文
获取原文并翻译 | 示例
           

摘要

Reactivity enhancement is crucial for the potential applications of ammonia (NH3) as a gas turbine fuel. Doping more reactive fuels like H-2, methane and syngas is a widely adopted strategy in this field, however fundamental combustion studies of NH3/reactive fuel mixtures under gas turbine-relevant high pressure conditions are still very limited. This work reports an effort to study laminar flame propagation of NH3/syngas mixtures up to 10 atm. Laminar burning velocities (LBVs) of NH3/syngas/air mixtures were measured at 298 K, various syngas contents in fuel mixtures (alpha) and H-2 contents in syngas (beta), and equivalence ratios of 0.7-1.5 in a high-pressure constant-volume cylindrical combustion vessel. A kinetic model was developed for NH3/syngas combustion based on our recent NH3 model and a recent syngas model in literature. It shows reasonable predictions on the present NH3/syngas LBVs at 1-10 atm, as well as previous data including NH3/syngas LBVs at 1 atm, NH3/syngas ignition delay times at various pressures and pure NH3 LBVs at various pressures. Modeling analysis including the sensitivity analysis and rate of production analysis provides kinetic interpretation for the effects of fuel composition (alpha and beta), equivalence ratio and pressure on NH3/syngas LBVs. It is found that the addition of syngas shifts the chemistry from NH3 sub-mechanism to syngas sub-mechanism. A modified fictitious diluent gas method was proposed to separate the chemical and thermal effects of syngas addition, which shows that the chemical effect is more responsible for the enhanced laminar flame propagation. NH3/syngas/air flames have similar reaction networks but different preferred pathways under lean and rich conditions. Compared with pure NH3 flames, the addition of syngas also improves the importance of H + O-2 (+ M) = HO2 (+ M) and consequently leads to strong pressure dependency of NH3/syngas/air flames. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:反应性增强对于氨(NH3)作为燃气轮机燃料的潜在应用至关重要。掺杂更多的活性燃料,如H-2,甲烷和合成气是该领域的广泛采用的策略,然而NH3 /无反应燃料混合物在燃气涡轮机相关的高压条件下的基本燃烧研究仍然非常有限。这项工作报告了努力研究NH3 /合成气混合物的Laminar火焰繁殖,最高可达10个ATM。在298k,在合成气(β)中的燃料混合物(α)和H-2含量的各种合成气含量和H-2含量的各种合成气含量和0.7-1.5的等效比率下测量Laminar燃烧速度(LBV)。压力恒定体积圆柱形燃烧容器。基于我们最近的NH3模型和最近的文学合成模型,为NH3 /合成气燃烧开发了动力学模型。它显示出在1-10atm的目前NH3 /合成气LBV上的合理预测,以及在各种压力下在各种压力和纯NH3 LBV处的NH 3 /合成气LBV的先前数据,包括NH 3 /合成气点火延迟时间。模拟分析包括敏感性分析和生产率分析率为燃料组合物(α和β),等效比和压力对NH3 /合成气LBV的影响提供了动力学解释。发现合成气的添加将化学从NH3子机构转移到合成气子机构。提出了一种改进的虚拟稀释气体方法,以分离合成气的化学和热效应,表明化学效果更负责增强的层状火焰繁殖。 NH3 /合成气/空气火焰具有类似的反应网络,但在瘦弱和富裕的条件下具有不同的优选途径。与纯NH3火焰相比,加入合成气也提高了H + O-2(+ M)= HO2(+ M)的重要性,从而导致NH3 /合成气/空气火焰的强大压力依赖性。 (c)2020燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

  • 来源
    《Combustion and Flame》 |2020年第10期|368-377|共10页
  • 作者单位

    Shanghai Jiao Tong Univ Sch Mech Engn Key Lab Power Machinery & Engn MOE Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn Key Lab Power Machinery & Engn MOE Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn Key Lab Power Machinery & Engn MOE Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn Key Lab Power Machinery & Engn MOE Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn Key Lab Power Machinery & Engn MOE Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn Key Lab Power Machinery & Engn MOE Shanghai 200240 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ammonia/syngas combustion; High pressure laminar burning velocity; Kinetic model; Fuel composition effect; Pressure effect;

    机译:氨/合成气燃烧;高压层压燃烧速度;动力学模型;燃料成分效果;压力效应;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号